Spaces:
Build error
Build error
Matteo Sirri
commited on
Commit
β’
f6bb7f6
1
Parent(s):
8499b06
perf: move tensor in gpu
Browse files- input_examples/input_examples/001.jpg β 001.jpg +0 -0
- input_examples/input_examples/002.jpg β 002.jpg +0 -0
- input_examples/input_examples/003.jpg β 003.jpg +0 -0
- input_examples/input_examples/004.jpg β 004.jpg +0 -0
- input_examples/input_examples/005.jpg β 005.jpg +0 -0
- input_examples/input_examples/006.jpg β 006.jpg +0 -0
- input_examples/input_examples/007.jpg β 007.jpg +0 -0
- app.py +7 -3
- input_examples/log.csv +0 -7
input_examples/input_examples/001.jpg β 001.jpg
RENAMED
File without changes
|
input_examples/input_examples/002.jpg β 002.jpg
RENAMED
File without changes
|
input_examples/input_examples/003.jpg β 003.jpg
RENAMED
File without changes
|
input_examples/input_examples/004.jpg β 004.jpg
RENAMED
File without changes
|
input_examples/input_examples/005.jpg β 005.jpg
RENAMED
File without changes
|
input_examples/input_examples/006.jpg β 006.jpg
RENAMED
File without changes
|
input_examples/input_examples/007.jpg β 007.jpg
RENAMED
File without changes
|
app.py
CHANGED
@@ -9,6 +9,8 @@ from src.detection.graph_utils import add_bbox
|
|
9 |
from src.detection.vision import presets
|
10 |
logging.getLogger('PIL').setLevel(logging.CRITICAL)
|
11 |
|
|
|
|
|
12 |
|
13 |
def load_model(baseline: bool = False):
|
14 |
if baseline:
|
@@ -21,7 +23,6 @@ def load_model(baseline: bool = False):
|
|
21 |
checkpoint = torch.load(
|
22 |
"model_split_3_FT_MOT17.pth", map_location="cpu")
|
23 |
model.load_state_dict(checkpoint["model"])
|
24 |
-
device = torch.device('cuda:0')
|
25 |
model.to(device)
|
26 |
model.eval()
|
27 |
return model
|
@@ -31,6 +32,7 @@ def frcnn_motsynth(image):
|
|
31 |
model = load_model(baseline=True)
|
32 |
transformEval = presets.DetectionPresetEval()
|
33 |
image_tensor = transformEval(image, None)[0]
|
|
|
34 |
prediction = model([image_tensor])[0]
|
35 |
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
36 |
torchvision.io.write_png(image_w_bbox, "custom_out.png")
|
@@ -41,6 +43,7 @@ def frcnn_coco(image):
|
|
41 |
model = load_model(baseline=True)
|
42 |
transformEval = presets.DetectionPresetEval()
|
43 |
image_tensor = transformEval(image, None)[0]
|
|
|
44 |
prediction = model([image_tensor])[0]
|
45 |
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
46 |
torchvision.io.write_png(image_w_bbox, "baseline_out.png")
|
@@ -49,7 +52,8 @@ def frcnn_coco(image):
|
|
49 |
|
50 |
title = "Domain shift adaption on pedestrian detection with Faster R-CNN"
|
51 |
description = "![alt text](http://www.aiacademy.unimore.it/media/news/ai-logo-white_2ND_EDITION.png)"
|
52 |
-
examples = "
|
|
|
53 |
|
54 |
io_baseline = gr.Interface(frcnn_coco, gr.Image(type="pil"), gr.Image(
|
55 |
type="file", shape=(1920, 1080), label="Baseline Model trained on COCO + FT on MOT17"))
|
@@ -58,4 +62,4 @@ io_custom = gr.Interface(frcnn_motsynth, gr.Image(type="pil"), gr.Image(
|
|
58 |
type="file", shape=(1920, 1080), label="Faster R-CNN trained on MOTSynth + FT on MOT17"))
|
59 |
|
60 |
gr.Parallel(io_baseline, io_custom, title=title,
|
61 |
-
description=description, examples=examples,theme="
|
|
|
9 |
from src.detection.vision import presets
|
10 |
logging.getLogger('PIL').setLevel(logging.CRITICAL)
|
11 |
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
|
15 |
def load_model(baseline: bool = False):
|
16 |
if baseline:
|
|
|
23 |
checkpoint = torch.load(
|
24 |
"model_split_3_FT_MOT17.pth", map_location="cpu")
|
25 |
model.load_state_dict(checkpoint["model"])
|
|
|
26 |
model.to(device)
|
27 |
model.eval()
|
28 |
return model
|
|
|
32 |
model = load_model(baseline=True)
|
33 |
transformEval = presets.DetectionPresetEval()
|
34 |
image_tensor = transformEval(image, None)[0]
|
35 |
+
image_tensor = image_tensor.to(device)
|
36 |
prediction = model([image_tensor])[0]
|
37 |
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
38 |
torchvision.io.write_png(image_w_bbox, "custom_out.png")
|
|
|
43 |
model = load_model(baseline=True)
|
44 |
transformEval = presets.DetectionPresetEval()
|
45 |
image_tensor = transformEval(image, None)[0]
|
46 |
+
image_tensor = image_tensor.to(device)
|
47 |
prediction = model([image_tensor])[0]
|
48 |
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
49 |
torchvision.io.write_png(image_w_bbox, "baseline_out.png")
|
|
|
52 |
|
53 |
title = "Domain shift adaption on pedestrian detection with Faster R-CNN"
|
54 |
description = "![alt text](http://www.aiacademy.unimore.it/media/news/ai-logo-white_2ND_EDITION.png)"
|
55 |
+
examples = ["001.jpg", "002.jpg", "003.jpg",
|
56 |
+
"004.jpg", "005.jpg", "006.jpg", "007.jpg", ]
|
57 |
|
58 |
io_baseline = gr.Interface(frcnn_coco, gr.Image(type="pil"), gr.Image(
|
59 |
type="file", shape=(1920, 1080), label="Baseline Model trained on COCO + FT on MOT17"))
|
|
|
62 |
type="file", shape=(1920, 1080), label="Faster R-CNN trained on MOTSynth + FT on MOT17"))
|
63 |
|
64 |
gr.Parallel(io_baseline, io_custom, title=title,
|
65 |
+
description=description, examples=examples, theme="default").launch(enable_queue=True)
|
input_examples/log.csv
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
"001.jpg"
|
2 |
-
"002.jpg"
|
3 |
-
"003.jpg"
|
4 |
-
"004.jpg"
|
5 |
-
"005.jpg"
|
6 |
-
"006.jpg"
|
7 |
-
"007.jpg"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|