Delete thirdparty/utils/image_utils.py
Browse files- thirdparty/utils/image_utils.py +0 -414
thirdparty/utils/image_utils.py
DELETED
|
@@ -1,414 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
This file contains functions that are used to perform data augmentation.
|
| 3 |
-
"""
|
| 4 |
-
import torch
|
| 5 |
-
import numpy as np
|
| 6 |
-
import scipy.misc
|
| 7 |
-
import cv2
|
| 8 |
-
import math
|
| 9 |
-
import joblib
|
| 10 |
-
from trimesh.visual import color
|
| 11 |
-
|
| 12 |
-
import jpeg4py as jpeg
|
| 13 |
-
from skimage.transform import rotate, resize
|
| 14 |
-
import matplotlib.pyplot as plt
|
| 15 |
-
import matplotlib.patches as mpatches
|
| 16 |
-
import matplotlib.gridspec as gridspec
|
| 17 |
-
|
| 18 |
-
from ..core import constants
|
| 19 |
-
from .vibe_image_utils import gen_trans_from_patch_cv
|
| 20 |
-
|
| 21 |
-
def get_transform(center, scale, res, rot=0):
|
| 22 |
-
"""Generate transformation matrix."""
|
| 23 |
-
h = 200 * scale
|
| 24 |
-
t = np.zeros((3, 3))
|
| 25 |
-
t[0, 0] = float(res[1]) / h
|
| 26 |
-
t[1, 1] = float(res[0]) / h
|
| 27 |
-
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
|
| 28 |
-
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
|
| 29 |
-
t[2, 2] = 1
|
| 30 |
-
if not rot == 0:
|
| 31 |
-
rot = -rot # To match direction of rotation from cropping
|
| 32 |
-
rot_mat = np.zeros((3, 3))
|
| 33 |
-
rot_rad = rot * np.pi / 180
|
| 34 |
-
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
| 35 |
-
rot_mat[0, :2] = [cs, -sn]
|
| 36 |
-
rot_mat[1, :2] = [sn, cs]
|
| 37 |
-
rot_mat[2, 2] = 1
|
| 38 |
-
# Need to rotate around center
|
| 39 |
-
t_mat = np.eye(3)
|
| 40 |
-
t_mat[0, 2] = -res[1] / 2
|
| 41 |
-
t_mat[1, 2] = -res[0] / 2
|
| 42 |
-
t_inv = t_mat.copy()
|
| 43 |
-
t_inv[:2, 2] *= -1
|
| 44 |
-
t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
|
| 45 |
-
return t
|
| 46 |
-
|
| 47 |
-
def read_img(img_fn):
|
| 48 |
-
# return pil_img.fromarray(
|
| 49 |
-
# cv2.cvtColor(cv2.imread(img_fn), cv2.COLOR_BGR2RGB))
|
| 50 |
-
# with open(img_fn, 'rb') as f:
|
| 51 |
-
# img = pil_img.open(f).convert('RGB')
|
| 52 |
-
# return img
|
| 53 |
-
if img_fn.endswith('jpeg') or img_fn.endswith('jpg'):
|
| 54 |
-
try:
|
| 55 |
-
with open(img_fn, 'rb') as f:
|
| 56 |
-
img = np.array(jpeg.JPEG(f).decode())
|
| 57 |
-
except jpeg.JPEGRuntimeError:
|
| 58 |
-
# logger.warning('{} produced a JPEGRuntimeError', img_fn)
|
| 59 |
-
img = cv2.cvtColor(cv2.imread(img_fn), cv2.COLOR_BGR2RGB)
|
| 60 |
-
else:
|
| 61 |
-
# elif img_fn.endswith('png') or img_fn.endswith('JPG') or img_fn.endswith(''):
|
| 62 |
-
img = cv2.cvtColor(cv2.imread(img_fn), cv2.COLOR_BGR2RGB)
|
| 63 |
-
return img
|
| 64 |
-
|
| 65 |
-
def get_random_crop_coords(height, width, crop_height, crop_width, h_start, w_start):
|
| 66 |
-
y1 = int((height - crop_height) * h_start)
|
| 67 |
-
y2 = y1 + crop_height
|
| 68 |
-
x1 = int((width - crop_width) * w_start)
|
| 69 |
-
x2 = x1 + crop_width
|
| 70 |
-
return x1, y1, x2, y2
|
| 71 |
-
|
| 72 |
-
def random_crop(center, scale, crop_scale_factor, axis='all'):
|
| 73 |
-
'''
|
| 74 |
-
center: bbox center [x,y]
|
| 75 |
-
scale: bbox height / 200
|
| 76 |
-
crop_scale_factor: amount of cropping to be applied
|
| 77 |
-
axis: axis which cropping will be applied
|
| 78 |
-
"x": center the y axis and get random crops in x
|
| 79 |
-
"y": center the x axis and get random crops in y
|
| 80 |
-
"all": randomly crop from all locations
|
| 81 |
-
'''
|
| 82 |
-
orig_size = int(scale * 200.)
|
| 83 |
-
ul = (center - (orig_size / 2.)).astype(int)
|
| 84 |
-
|
| 85 |
-
crop_size = int(orig_size * crop_scale_factor)
|
| 86 |
-
|
| 87 |
-
if axis == 'all':
|
| 88 |
-
h_start = np.random.rand()
|
| 89 |
-
w_start = np.random.rand()
|
| 90 |
-
elif axis == 'x':
|
| 91 |
-
h_start = np.random.rand()
|
| 92 |
-
w_start = 0.5
|
| 93 |
-
elif axis == 'y':
|
| 94 |
-
h_start = 0.5
|
| 95 |
-
w_start = np.random.rand()
|
| 96 |
-
else:
|
| 97 |
-
raise ValueError(f'axis {axis} is undefined!')
|
| 98 |
-
|
| 99 |
-
x1, y1, x2, y2 = get_random_crop_coords(
|
| 100 |
-
height=orig_size,
|
| 101 |
-
width=orig_size,
|
| 102 |
-
crop_height=crop_size,
|
| 103 |
-
crop_width=crop_size,
|
| 104 |
-
h_start=h_start,
|
| 105 |
-
w_start=w_start,
|
| 106 |
-
)
|
| 107 |
-
scale = (y2 - y1) / 200.
|
| 108 |
-
center = ul + np.array([(y1 + y2) / 2, (x1 + x2) / 2])
|
| 109 |
-
return center, scale
|
| 110 |
-
|
| 111 |
-
def transform(pt, center, scale, res, invert=0, rot=0):
|
| 112 |
-
"""Transform pixel location to different reference."""
|
| 113 |
-
t = get_transform(center, scale, res, rot=rot)
|
| 114 |
-
if invert:
|
| 115 |
-
t = np.linalg.inv(t)
|
| 116 |
-
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
|
| 117 |
-
new_pt = np.dot(t, new_pt)
|
| 118 |
-
return new_pt[:2].astype(int) + 1
|
| 119 |
-
|
| 120 |
-
def convert_crop_coords_to_orig_img_cliff(bbox, keypoints, crop_size):
|
| 121 |
-
cx, cy, h = bbox[:, 0], bbox[:, 1], bbox[:, 2]
|
| 122 |
-
|
| 123 |
-
# unnormalize to crop coords
|
| 124 |
-
keypoints[:,:,:2] = 0.5 * crop_size * (keypoints[:,:,:2] + 1.0)
|
| 125 |
-
|
| 126 |
-
# rescale to orig img crop
|
| 127 |
-
keypoints[:,:,:2] *= h[..., None, None] / crop_size
|
| 128 |
-
|
| 129 |
-
# transform into original image coords
|
| 130 |
-
keypoints[:,:,0] = (cx - h/2)[..., None] + keypoints[:,:,0]
|
| 131 |
-
keypoints[:,:,1] = (cy - h/2)[..., None] + keypoints[:,:,1]
|
| 132 |
-
return keypoints[0]
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
def crop(img, center, scale, res, rot=0):
|
| 136 |
-
"""Crop image according to the supplied bounding box."""
|
| 137 |
-
# Upper left point
|
| 138 |
-
ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1
|
| 139 |
-
# Bottom right point
|
| 140 |
-
br = np.array(transform([res[0] + 1,
|
| 141 |
-
res[1] + 1], center, scale, res, invert=1)) - 1
|
| 142 |
-
|
| 143 |
-
# Padding so that when rotated proper amount of context is included
|
| 144 |
-
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)
|
| 145 |
-
if not rot == 0:
|
| 146 |
-
ul -= pad
|
| 147 |
-
br += pad
|
| 148 |
-
|
| 149 |
-
new_shape = [br[1] - ul[1], br[0] - ul[0]]
|
| 150 |
-
if len(img.shape) > 2:
|
| 151 |
-
new_shape += [img.shape[2]]
|
| 152 |
-
new_img = np.zeros(new_shape)
|
| 153 |
-
|
| 154 |
-
# Range to fill new array
|
| 155 |
-
new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
|
| 156 |
-
new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
|
| 157 |
-
# Range to sample from original image
|
| 158 |
-
old_x = max(0, ul[0]), min(len(img[0]), br[0])
|
| 159 |
-
old_y = max(0, ul[1]), min(len(img), br[1])
|
| 160 |
-
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1],
|
| 161 |
-
old_x[0]:old_x[1]]
|
| 162 |
-
|
| 163 |
-
if not rot == 0:
|
| 164 |
-
# Remove padding
|
| 165 |
-
new_img = rotate(new_img, rot)
|
| 166 |
-
new_img = new_img[pad:-pad, pad:-pad]
|
| 167 |
-
|
| 168 |
-
new_img = resize(new_img, res)
|
| 169 |
-
return new_img
|
| 170 |
-
|
| 171 |
-
def calculate_focal_length(img_h, img_w):
|
| 172 |
-
return float((img_w**2 + img_h**2)**0.5)
|
| 173 |
-
|
| 174 |
-
def calculate_bbox_info(bb_center, bb_scale, orig_shape):
|
| 175 |
-
|
| 176 |
-
img_h, img_w = orig_shape[0], orig_shape[1]
|
| 177 |
-
cx, cy = bb_center[0], bb_center[1]
|
| 178 |
-
b = bb_scale * 200
|
| 179 |
-
focal_length = calculate_focal_length(img_h, img_w)
|
| 180 |
-
|
| 181 |
-
bbox_info = np.array([cx - img_w / 2., cy - img_h / 2., b])
|
| 182 |
-
|
| 183 |
-
# The constants below are used for normalization, and calculated from H36M data.
|
| 184 |
-
bbox_info[:2] = bbox_info[:2] / focal_length * 2.8
|
| 185 |
-
bbox_info[2] = (bbox_info[2] - 0.24 * focal_length) / (0.06 * focal_length)
|
| 186 |
-
|
| 187 |
-
return bbox_info.astype(np.float32)
|
| 188 |
-
|
| 189 |
-
def crop_cv2(img, center, scale, res, rot=0):
|
| 190 |
-
c_x, c_y = center
|
| 191 |
-
c_x, c_y = int(round(c_x)), int(round(c_y))
|
| 192 |
-
patch_width, patch_height = int(round(res[0])), int(round(res[1]))
|
| 193 |
-
bb_width = bb_height = int(round(scale * 200.))
|
| 194 |
-
|
| 195 |
-
trans = gen_trans_from_patch_cv(
|
| 196 |
-
c_x, c_y, bb_width, bb_height,
|
| 197 |
-
patch_width, patch_height,
|
| 198 |
-
scale=1.0, rot=rot, inv=False,
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
crop_img = cv2.warpAffine(
|
| 202 |
-
img, trans, (int(patch_width), int(patch_height)),
|
| 203 |
-
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
return crop_img
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
def uncrop(img, center, scale, orig_shape, rot=0, is_rgb=True):
|
| 210 |
-
"""'Undo' the image cropping/resizing.
|
| 211 |
-
This function is used when evaluating mask/part segmentation.
|
| 212 |
-
"""
|
| 213 |
-
res = img.shape[:2]
|
| 214 |
-
# Upper left point
|
| 215 |
-
ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1
|
| 216 |
-
# Bottom right point
|
| 217 |
-
br = np.array(transform([res[0] + 1, res[1] + 1], center, scale, res, invert=1)) - 1
|
| 218 |
-
# size of cropped image
|
| 219 |
-
crop_shape = [br[1] - ul[1], br[0] - ul[0]]
|
| 220 |
-
|
| 221 |
-
new_shape = [br[1] - ul[1], br[0] - ul[0]]
|
| 222 |
-
if len(img.shape) > 2:
|
| 223 |
-
new_shape += [img.shape[2]]
|
| 224 |
-
new_img = np.zeros(orig_shape, dtype=np.uint8)
|
| 225 |
-
# Range to fill new array
|
| 226 |
-
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0]
|
| 227 |
-
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1]
|
| 228 |
-
# Range to sample from original image
|
| 229 |
-
old_x = max(0, ul[0]), min(orig_shape[1], br[0])
|
| 230 |
-
old_y = max(0, ul[1]), min(orig_shape[0], br[1])
|
| 231 |
-
img = scipy.misc.imresize(img, crop_shape, interp='nearest')
|
| 232 |
-
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]]
|
| 233 |
-
return new_img
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
def rot_aa(aa, rot):
|
| 237 |
-
"""Rotate axis angle parameters."""
|
| 238 |
-
# pose parameters
|
| 239 |
-
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
|
| 240 |
-
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
|
| 241 |
-
[0, 0, 1]])
|
| 242 |
-
# find the rotation of the body in camera frame
|
| 243 |
-
per_rdg, _ = cv2.Rodrigues(aa)
|
| 244 |
-
# apply the global rotation to the global orientation
|
| 245 |
-
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg))
|
| 246 |
-
aa = (resrot.T)[0]
|
| 247 |
-
return aa
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
def flip_img(img):
|
| 251 |
-
"""Flip rgb images or masks.
|
| 252 |
-
channels come last, e.g. (256,256,3).
|
| 253 |
-
"""
|
| 254 |
-
img = np.fliplr(img)
|
| 255 |
-
return img
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
def flip_kp(kp):
|
| 259 |
-
"""Flip keypoints."""
|
| 260 |
-
if len(kp) == 24:
|
| 261 |
-
flipped_parts = constants.J24_FLIP_PERM
|
| 262 |
-
elif len(kp) == 49:
|
| 263 |
-
flipped_parts = constants.J49_FLIP_PERM
|
| 264 |
-
kp = kp[flipped_parts]
|
| 265 |
-
kp[:, 0] = - kp[:, 0]
|
| 266 |
-
return kp
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
def flip_pose(pose):
|
| 270 |
-
"""Flip pose.
|
| 271 |
-
The flipping is based on SMPL parameters.
|
| 272 |
-
"""
|
| 273 |
-
flipped_parts = constants.SMPL_POSE_FLIP_PERM
|
| 274 |
-
pose = pose[flipped_parts]
|
| 275 |
-
# we also negate the second and the third dimension of the axis-angle
|
| 276 |
-
pose[1::3] = -pose[1::3]
|
| 277 |
-
pose[2::3] = -pose[2::3]
|
| 278 |
-
return pose
|
| 279 |
-
|
| 280 |
-
def rescale_cv2(img, rescale_fac):
|
| 281 |
-
width = int(img.shape[1] * rescale_fac)
|
| 282 |
-
height = int(img.shape[0] * rescale_fac)
|
| 283 |
-
|
| 284 |
-
dsize = (width, height)
|
| 285 |
-
img = cv2.resize(img, dsize, interpolation = cv2.INTER_LINEAR)
|
| 286 |
-
return img
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
def generate_part_labels(vertices, faces, cam_t, K, R, dist_coeffs, body_part_texture, part_bins, neural_renderer):
|
| 290 |
-
batch_size = vertices.shape[0]
|
| 291 |
-
|
| 292 |
-
body_parts, depth, mask = neural_renderer(
|
| 293 |
-
vertices,
|
| 294 |
-
faces.expand(batch_size, -1, -1),
|
| 295 |
-
textures=body_part_texture.expand(batch_size, -1, -1, -1, -1, -1),
|
| 296 |
-
K=K.expand(batch_size, -1, -1),
|
| 297 |
-
R=R.expand(batch_size, -1, -1),
|
| 298 |
-
dist_coeffs=dist_coeffs,
|
| 299 |
-
t=cam_t.unsqueeze(1),
|
| 300 |
-
)
|
| 301 |
-
|
| 302 |
-
render_rgb = body_parts.clone()
|
| 303 |
-
|
| 304 |
-
body_parts = body_parts.permute(0, 2, 3, 1)
|
| 305 |
-
body_parts *= 255. # multiply it with 255 to make labels distant
|
| 306 |
-
body_parts, _ = body_parts.max(-1) # reduce to single channel
|
| 307 |
-
|
| 308 |
-
body_parts = torch.bucketize(body_parts.detach(), part_bins, right=True) # np.digitize(body_parts, bins, right=True)
|
| 309 |
-
|
| 310 |
-
# add 1 to make background label 0
|
| 311 |
-
body_parts = body_parts.long() + 1
|
| 312 |
-
body_parts = body_parts * mask.detach()
|
| 313 |
-
|
| 314 |
-
return body_parts.long(), render_rgb
|
| 315 |
-
|
| 316 |
-
def get_body_part_texture(faces, n_vertices=6890, non_parametric=False):
|
| 317 |
-
smpl_segmentation = joblib.load('data/smpl_partSegmentation_mapping.pkl')
|
| 318 |
-
|
| 319 |
-
smpl_vert_idx = smpl_segmentation['smpl_index']
|
| 320 |
-
nparts = 24.
|
| 321 |
-
|
| 322 |
-
if non_parametric:
|
| 323 |
-
# reduce the number of body_parts to 14
|
| 324 |
-
# by mapping some joints to others
|
| 325 |
-
nparts = 14.
|
| 326 |
-
joint_mapping = map_smpl_to_common()
|
| 327 |
-
|
| 328 |
-
for jm in joint_mapping:
|
| 329 |
-
for j in jm[0]:
|
| 330 |
-
smpl_vert_idx[smpl_vert_idx==j] = jm[1]
|
| 331 |
-
|
| 332 |
-
vertex_colors = np.ones((n_vertices, 4))
|
| 333 |
-
vertex_colors[:, :3] = smpl_vert_idx[..., None]
|
| 334 |
-
|
| 335 |
-
vertex_colors = color.to_rgba(vertex_colors)
|
| 336 |
-
face_colors = vertex_colors[faces].min(axis=1)
|
| 337 |
-
|
| 338 |
-
texture = np.zeros((1, faces.shape[0], 1, 1, 1, 3), dtype=np.float32)
|
| 339 |
-
texture[0, :, 0, 0, 0, :] = face_colors[:, :3] / nparts
|
| 340 |
-
texture = torch.from_numpy(texture).float()
|
| 341 |
-
return texture
|
| 342 |
-
|
| 343 |
-
def get_default_camera(focal_length, img_size):
|
| 344 |
-
K = torch.eye(3)
|
| 345 |
-
K[0, 0] = focal_length
|
| 346 |
-
K[1, 1] = focal_length
|
| 347 |
-
K[2, 2] = 1
|
| 348 |
-
K[0, 2] = img_size / 2.
|
| 349 |
-
K[1, 2] = img_size / 2.
|
| 350 |
-
K = K[None, :, :]
|
| 351 |
-
R = torch.eye(3)[None, :, :]
|
| 352 |
-
dist_coeffs = torch.FloatTensor([[0., 0., 0., 0., 0.,]])
|
| 353 |
-
return K, R, dist_coeffs
|
| 354 |
-
|
| 355 |
-
def overlay_text(image, txt_str, str_id=1):
|
| 356 |
-
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 357 |
-
font_scale = image.shape[0]*0.0016
|
| 358 |
-
thickness = int(image.shape[0]*0.005)
|
| 359 |
-
bbox_offset = int(image.shape[0]*0.01)
|
| 360 |
-
text_offset_x, text_offset_y = int(image.shape[1]*0.02), int(image.shape[0]*0.06*str_id)
|
| 361 |
-
|
| 362 |
-
(text_width, text_height) = cv2.getTextSize(txt_str, font, fontScale=font_scale, thickness=thickness)[0]
|
| 363 |
-
box_coords = ((text_offset_x, text_offset_y + bbox_offset), (text_offset_x + text_width + bbox_offset, text_offset_y - text_height - bbox_offset))
|
| 364 |
-
|
| 365 |
-
cv2.rectangle(image, box_coords[0], box_coords[1], (255, 255, 255), cv2.FILLED)
|
| 366 |
-
cv2.putText(image, txt_str, (text_offset_x, text_offset_y), font, font_scale, (0, 0, 255), thickness)
|
| 367 |
-
return image
|
| 368 |
-
|
| 369 |
-
def show_imgs(imgs, num_rows=1, size=15, live=False, legend=False, cmap=None, label=None,
|
| 370 |
-
save_img=False, filename=None):
|
| 371 |
-
if live == True:
|
| 372 |
-
clear_output(wait=True)
|
| 373 |
-
num_imgs_per_row = math.ceil(len(imgs)/num_rows)
|
| 374 |
-
fig, axs = plt.subplots(num_rows, num_imgs_per_row, squeeze=False,
|
| 375 |
-
figsize=(size,size), constrained_layout=True)
|
| 376 |
-
img_idx = 0
|
| 377 |
-
for row in range(num_rows):
|
| 378 |
-
for i in range(num_imgs_per_row):
|
| 379 |
-
axs[row,i].imshow(imgs[img_idx])
|
| 380 |
-
axs[row,i].axis('off')
|
| 381 |
-
if img_idx < len(imgs) - 1:
|
| 382 |
-
img_idx += 1
|
| 383 |
-
if legend == True:
|
| 384 |
-
patches = [mpatches.Patch(color=cmap[i],
|
| 385 |
-
label=label[i]) for i in cmap]
|
| 386 |
-
plt.legend(handles=patches, loc=4,
|
| 387 |
-
borderaxespad=1, fontsize=8)
|
| 388 |
-
if save_img == True:
|
| 389 |
-
plt.savefig(filename, dpi=500, bbox_inches='tight')
|
| 390 |
-
else:
|
| 391 |
-
plt.show()
|
| 392 |
-
|
| 393 |
-
def concat_images_np(imga, imgb):
|
| 394 |
-
"""
|
| 395 |
-
Combines two color image ndarrays side-by-side.
|
| 396 |
-
"""
|
| 397 |
-
assert imga.dtype == imgb.dtype, ''
|
| 398 |
-
ha,wa = imga.shape[:2]
|
| 399 |
-
hb,wb = imgb.shape[:2]
|
| 400 |
-
max_height = np.max([ha, hb])
|
| 401 |
-
total_width = wa+wb
|
| 402 |
-
new_img = np.zeros(shape=(max_height, total_width, 3)).astype(imga.dtype)
|
| 403 |
-
new_img[:ha,:wa]=imga
|
| 404 |
-
new_img[:hb,wa:wa+wb]=imgb
|
| 405 |
-
return new_img
|
| 406 |
-
|
| 407 |
-
def concat_n_images_np(image_np_list):
|
| 408 |
-
"""
|
| 409 |
-
Combines N color images from a list of image ndarrays
|
| 410 |
-
"""
|
| 411 |
-
output = None
|
| 412 |
-
for i, img_np in enumerate(image_np_list):
|
| 413 |
-
output = img_np if i==0 else contact_images_np(output, img)
|
| 414 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|