singhjagpreet commited on
Commit
ee66e58
·
1 Parent(s): b7a4d51

eda and model training

Browse files
notebook/EDA.ipynb CHANGED
@@ -1111,7 +1111,7 @@
1111
  },
1112
  {
1113
  "cell_type": "code",
1114
- "execution_count": 22,
1115
  "metadata": {},
1116
  "outputs": [
1117
  {
@@ -1123,7 +1123,7 @@
1123
  " dtype='object')"
1124
  ]
1125
  },
1126
- "execution_count": 22,
1127
  "metadata": {},
1128
  "output_type": "execute_result"
1129
  }
@@ -1134,7 +1134,7 @@
1134
  },
1135
  {
1136
  "cell_type": "code",
1137
- "execution_count": 31,
1138
  "metadata": {},
1139
  "outputs": [
1140
  {
@@ -1197,7 +1197,7 @@
1197
  },
1198
  {
1199
  "cell_type": "code",
1200
- "execution_count": 35,
1201
  "metadata": {},
1202
  "outputs": [
1203
  {
@@ -1206,7 +1206,7 @@
1206
  "<Axes: ylabel='writing_score'>"
1207
  ]
1208
  },
1209
- "execution_count": 35,
1210
  "metadata": {},
1211
  "output_type": "execute_result"
1212
  },
@@ -1253,7 +1253,7 @@
1253
  },
1254
  {
1255
  "cell_type": "code",
1256
- "execution_count": 68,
1257
  "metadata": {},
1258
  "outputs": [
1259
  {
@@ -1344,12 +1344,12 @@
1344
  },
1345
  {
1346
  "cell_type": "code",
1347
- "execution_count": 73,
1348
  "metadata": {},
1349
  "outputs": [
1350
  {
1351
  "data": {
1352
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAANGCAYAAADj2+G3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABSMUlEQVR4nOzdfZjVdZ3/8dcAMqA4gygMN+JdZch6g+KKo93pklTE5qbluq6SmW2GrjKpRItQWmKW5rahrJZR+1suzH4/3VLDDMU2JU2MXbM08eYHP3UGzGVGUWeEOb8/upyagBTkw+Hm8biuc13M9+ac95frex3O4Tnne2oqlUolAAAAAAAAFNOj2gMAAAAAAABs7wQZAAAAAACAwgQZAAAAAACAwgQZAAAAAACAwgQZAAAAAACAwgQZAAAAAACAwgQZAAAAAACAwgQZAAAAAACAwgQZAAAAAACAwgQZAAAAAACAwgQZAACAbchPf/rTTJgwIUOHDk1NTU1uvvnm191n4cKFOeyww1JbW5u3vvWtmTNnTvE5AQCA7gQZAACAbcjq1atzyCGHZNasWW9o+yeffDLjx4/PMccckyVLluS8887LJz7xidx+++2FJwUAAP5YTaVSqVR7CAAAADZeTU1Nbrrpphx//PEb3GbKlCm59dZb86tf/apr2d/+7d9m1apVmT9//haYEgAASJJe1R5ga9DZ2Zlnnnkmu+66a2pqaqo9DgAAFFWpVPLCCy9k6NCh6dHDh+a3d4sWLcrYsWO7LRs3blzOO++8De7T3t6e9vb2rp87Ozvz/PPPZ/fdd/eeCQCAHUKJ902CTJJnnnkmw4cPr/YYAACwRS1fvjx77rlntcegsObm5jQ0NHRb1tDQkLa2trz88svp27fvOvvMnDkzX/jCF7bUiAAAsNXanO+bBJkku+66a5Lf/8XW1dVVeRoAACirra0tw4cP73odDH9q6tSpaWpq6vq5tbU1e+21l/dMAADsMEq8bxJkkq6P3NfV1XlzAQDADsOlp3YMgwcPTktLS7dlLS0tqaurW++nY5KktrY2tbW16yz3ngkAgB3N5nzf5ILRAAAA27HGxsYsWLCg27I77rgjjY2NVZoIAAB2TIIMAADANuTFF1/MkiVLsmTJkiTJk08+mSVLlmTZsmVJfn+5sdNOO61r+0996lN54okncuGFF+aRRx7J1Vdfne9973uZPHlyNcYHAIAdliADAACwDXnggQdy6KGH5tBDD02SNDU15dBDD8306dOTJM8++2xXnEmSfffdN7feemvuuOOOHHLIIbniiivyzW9+M+PGjavK/AAAsKOqqVQqlWoPUW1tbW2pr69Pa2ur6yEDALDd8/qXjeWcAQBgR1PiNbBPyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABTWq9oDsK6+x3ZUewS2IWue/GJq+r8jPXd7T7VHYRvy8p29qz0CAAAAAOxQBBnYxvXad1q1RwAAAAAA4HW4ZBkAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhggwAAAAAAEBhVQ0yn//851NTU9PtNmLEiK71r7zySiZNmpTdd989/fr1ywknnJCWlpZu97Fs2bKMHz8+O++8cwYNGpQLLrgga9as2dKHAgAAAAAAsEG9qj3AX/zFX+QnP/lJ18+9ev1hpMmTJ+fWW2/NjTfemPr6+px99tn58Ic/nHvuuSdJsnbt2owfPz6DBw/Ovffem2effTannXZadtppp1x66aVb/FgAAAAAAADWp+pBplevXhk8ePA6y1tbW/Otb30rc+fOzbHHHpsk+fa3v50DDjggP//5z3PkkUfmxz/+cX7961/nJz/5SRoaGjJq1KhccsklmTJlSj7/+c+nd+/eW/pwAAAAAAAA1lH175B57LHHMnTo0Oy333455ZRTsmzZsiTJ4sWL8+qrr2bs2LFd244YMSJ77bVXFi1alCRZtGhRDjrooDQ0NHRtM27cuLS1teXhhx/e4GO2t7enra2t2w0AAAAAAKCUqgaZMWPGZM6cOZk/f36uueaaPPnkk3nnO9+ZF154Ic3Nzendu3f69+/fbZ+GhoY0NzcnSZqbm7vFmNfWv7ZuQ2bOnJn6+vqu2/DhwzfvgQEAAAAAAPyRql6y7P3vf3/Xnw8++OCMGTMme++9d773ve+lb9++xR536tSpaWpq6vq5ra1NlAEAAAAAAIqp+iXL/lj//v2z//77Z+nSpRk8eHA6OjqyatWqbtu0tLR0fefM4MGD09LSss7619ZtSG1tberq6rrdAAAAAAAAStmqgsyLL76Yxx9/PEOGDMno0aOz0047ZcGCBV3rH3300SxbtiyNjY1JksbGxjz00ENZsWJF1zZ33HFH6urqMnLkyC0+PwAAAAAAwPpU9ZJl559/fiZMmJC99947zzzzTGbMmJGePXvm5JNPTn19fc4444w0NTVlwIABqauryznnnJPGxsYceeSRSZLjjjsuI0eOzKmnnprLL788zc3NmTZtWiZNmpTa2tpqHhoAAAAAAECXqgaZ//f//l9OPvnk/O53v8vAgQPzjne8Iz//+c8zcODAJMnXvva19OjRIyeccELa29szbty4XH311V379+zZM7fcckvOOuusNDY2ZpdddsnEiRNz8cUXV+uQAAAAAAAA1lFTqVQq1R6i2tra2lJfX5/W1tat4vtk+h7bUe0RgO3cy3f2rvYIAFTR1vb6l62fcwYAgB1NidfAW9V3yAAAAAAAAGyPBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCBBkAAAAAAIDCelV7AADYWnRcVFvtEdiG/ODRzvz2d5Wcf1TPao/CNqT3Je3VHgEAAIAqEWQAADbBX7/dB40BAACAN87/JAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAAAAABQmyAAAAGxjZs2alX322Sd9+vTJmDFjcv/99//Z7a+66qq8/e1vT9++fTN8+PBMnjw5r7zyyhaaFgAASAQZAACAbcoNN9yQpqamzJgxIw8++GAOOeSQjBs3LitWrFjv9nPnzs1nP/vZzJgxI7/5zW/yrW99KzfccEM+97nPbeHJAQBgxybIAAAAbEOuvPLKnHnmmTn99NMzcuTIzJ49OzvvvHOuv/769W5/77335uijj87f/d3fZZ999slxxx2Xk08++XU/VQMAAGxeggwAAMA2oqOjI4sXL87YsWO7lvXo0SNjx47NokWL1rvPUUcdlcWLF3cFmCeeeCK33XZbPvCBD2zwcdrb29PW1tbtBgAAvDm9qj0AAAAAb8xzzz2XtWvXpqGhodvyhoaGPPLII+vd5+/+7u/y3HPP5R3veEcqlUrWrFmTT33qU3/2kmUzZ87MF77whc06OwAA7Oh8QgYAAGA7tnDhwlx66aW5+uqr8+CDD+b//J//k1tvvTWXXHLJBveZOnVqWltbu27Lly/fghMDAMD2ySdkAAAAthF77LFHevbsmZaWlm7LW1paMnjw4PXuc9FFF+XUU0/NJz7xiSTJQQcdlNWrV+eTn/xk/umf/ik9eqz7e3q1tbWpra3d/AcAAAA7MJ+QAQAA2Eb07t07o0ePzoIFC7qWdXZ2ZsGCBWlsbFzvPi+99NI60aVnz55JkkqlUm5YAACgG5+QAQAA2IY0NTVl4sSJOfzww3PEEUfkqquuyurVq3P66acnSU477bQMGzYsM2fOTJJMmDAhV155ZQ499NCMGTMmS5cuzUUXXZQJEyZ0hRkAAKA8QQYAAGAbctJJJ2XlypWZPn16mpubM2rUqMyfPz8NDQ1JkmXLlnX7RMy0adNSU1OTadOm5emnn87AgQMzYcKEfOlLX6rWIQAAwA6ppuIz6mlra0t9fX1aW1tTV1dX7XHS99iOao8AbOdevrN3tUfYKnVc5Fr5QFm9L2mv9ghJtr7Xv2z9nDMAAOxoSrwG9h0yAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhQkyAAAAAAAAhW01Qeayyy5LTU1NzjvvvK5lr7zySiZNmpTdd989/fr1ywknnJCWlpZu+y1btizjx4/PzjvvnEGDBuWCCy7ImjVrtvD0AAAAAAAAG7ZVBJlf/OIX+dd//dccfPDB3ZZPnjw5P/zhD3PjjTfm7rvvzjPPPJMPf/jDXevXrl2b8ePHp6OjI/fee2++853vZM6cOZk+ffqWPgQAAAAAAIANqnqQefHFF3PKKafkuuuuy2677da1vLW1Nd/61rdy5ZVX5thjj83o0aPz7W9/O/fee29+/vOfJ0l+/OMf59e//nX+1//6Xxk1alTe//7355JLLsmsWbPS0dGxwcdsb29PW1tbtxsAAAAAAEApVQ8ykyZNyvjx4zN27NhuyxcvXpxXX3212/IRI0Zkr732yqJFi5IkixYtykEHHZSGhoaubcaNG5e2trY8/PDDG3zMmTNnpr6+vus2fPjwzXxUAAAAAAAAf1DVIDNv3rw8+OCDmTlz5jrrmpub07t37/Tv37/b8oaGhjQ3N3dt88cx5rX1r63bkKlTp6a1tbXrtnz58jd5JAAAAAAAABvWq1oPvHz58px77rm544470qdPny362LW1tamtrd2ijwkAAAAAAOy4qvYJmcWLF2fFihU57LDD0qtXr/Tq1St33313vv71r6dXr15paGhIR0dHVq1a1W2/lpaWDB48OEkyePDgtLS0rLP+tXUAAAAAAABbg6oFmb/6q7/KQw89lCVLlnTdDj/88Jxyyildf95pp52yYMGCrn0effTRLFu2LI2NjUmSxsbGPPTQQ1mxYkXXNnfccUfq6uoycuTILX5MAAAAAAAA61O1S5btuuuuOfDAA7st22WXXbL77rt3LT/jjDPS1NSUAQMGpK6uLuecc04aGxtz5JFHJkmOO+64jBw5Mqeeemouv/zyNDc3Z9q0aZk0aZJLkgEAAAAAAFuNqgWZN+JrX/taevTokRNOOCHt7e0ZN25crr766q71PXv2zC233JKzzjorjY2N2WWXXTJx4sRcfPHFVZwaAAAAAACgu5pKpVKp9hDV1tbWlvr6+rS2tqaurq7a46TvsR3VHgHYzr18Z+9qj7BV6rjIpyuBsnpf0l7tEZJsfa9/2fo5ZwAA2NGUeA1cte+QAQAAAAAA2FEIMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAAAAAAIUJMgAAANuYWbNmZZ999kmfPn0yZsyY3H///X92+1WrVmXSpEkZMmRIamtrs//+++e2227bQtMCAABJ0qvaAwAAAPDG3XDDDWlqasrs2bMzZsyYXHXVVRk3blweffTRDBo0aJ3tOzo68t73vjeDBg3K97///QwbNiz/9//+3/Tv33/LDw8AADswQQYAAGAbcuWVV+bMM8/M6aefniSZPXt2br311lx//fX57Gc/u872119/fZ5//vnce++92WmnnZIk++yzz5YcGQAAiEuWAQAAbDM6OjqyePHijB07tmtZjx49Mnbs2CxatGi9+/zgBz9IY2NjJk2alIaGhhx44IG59NJLs3bt2g0+Tnt7e9ra2rrdAACAN0eQAQAA2EY899xzWbt2bRoaGrotb2hoSHNz83r3eeKJJ/L9738/a9euzW233ZaLLrooV1xxRb74xS9u8HFmzpyZ+vr6rtvw4cM363EAAMCOSJABAADYjnV2dmbQoEG59tprM3r06Jx00kn5p3/6p8yePXuD+0ydOjWtra1dt+XLl2/BiQEAYPvkO2QAAAC2EXvssUd69uyZlpaWbstbWloyePDg9e4zZMiQ7LTTTunZs2fXsgMOOCDNzc3p6OhI796919mntrY2tbW1m3d4AADYwfmEDAAAwDaid+/eGT16dBYsWNC1rLOzMwsWLEhjY+N69zn66KOzdOnSdHZ2di377W9/myFDhqw3xgAAAGUIMgAAANuQpqamXHfddfnOd76T3/zmNznrrLOyevXqnH766UmS0047LVOnTu3a/qyzzsrzzz+fc889N7/97W9z66235tJLL82kSZOqdQgAALBDcskyAACAbchJJ52UlStXZvr06Wlubs6oUaMyf/78NDQ0JEmWLVuWHj3+8Lt3w4cPz+23357Jkyfn4IMPzrBhw3LuuedmypQp1ToEAADYIdVUKpVKtYeotra2ttTX16e1tTV1dXXVHid9j+2o9gjAdu7lO12eZH06LnKtfKCs3pe0V3uEJFvf61+2fs4ZAAB2NCVeA7tkGQAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGGCDAAAAAAAQGFVDTLXXHNNDj744NTV1aWuri6NjY350Y9+1LX+lVdeyaRJk7L77runX79+OeGEE9LS0tLtPpYtW5bx48dn5513zqBBg3LBBRdkzZo1W/pQAAAAAAAANqiqQWbPPffMZZddlsWLF+eBBx7Isccemw996EN5+OGHkySTJ0/OD3/4w9x44425++6788wzz+TDH/5w1/5r167N+PHj09HRkXvvvTff+c53MmfOnEyfPr1ahwQAAAAAALCOmkqlUqn2EH9swIAB+cpXvpITTzwxAwcOzNy5c3PiiScmSR555JEccMABWbRoUY488sj86Ec/ygc/+ME888wzaWhoSJLMnj07U6ZMycqVK9O7d+839JhtbW2pr69Pa2tr6urqih3bG9X32I5qjwBs516+8409P+5oOi6qrfYIwHau9yXt1R4hydb3+petn3MGAIAdTYnXwFvNd8isXbs28+bNy+rVq9PY2JjFixfn1VdfzdixY7u2GTFiRPbaa68sWrQoSbJo0aIcdNBBXTEmScaNG5e2trauT9msT3t7e9ra2rrdAAAAAAAASql6kHnooYfSr1+/1NbW5lOf+lRuuummjBw5Ms3Nzendu3f69+/fbfuGhoY0NzcnSZqbm7vFmNfWv7ZuQ2bOnJn6+vqu2/DhwzfvQQEAAAAAAPyRqgeZt7/97VmyZEnuu+++nHXWWZk4cWJ+/etfF33MqVOnprW1teu2fPnyoo8HAAAAAADs2HpVe4DevXvnrW99a5Jk9OjR+cUvfpF//ud/zkknnZSOjo6sWrWq26dkWlpaMnjw4CTJ4MGDc//993e7v5aWlq51G1JbW5vaWt8TAAAAAAAAbBlV/4TMn+rs7Ex7e3tGjx6dnXbaKQsWLOha9+ijj2bZsmVpbGxMkjQ2Nuahhx7KihUrura54447UldXl5EjR27x2QEAAAAAANanqp+QmTp1at7//vdnr732ygsvvJC5c+dm4cKFuf3221NfX58zzjgjTU1NGTBgQOrq6nLOOeeksbExRx55ZJLkuOOOy8iRI3Pqqafm8ssvT3Nzc6ZNm5ZJkyb5BAwAAAAAALDVqGqQWbFiRU477bQ8++yzqa+vz8EHH5zbb789733ve5MkX/va19KjR4+ccMIJaW9vz7hx43L11Vd37d+zZ8/ccsstOeuss9LY2JhddtklEydOzMUXX1ytQwIAAAAAAFhHTaVSqVR7iGpra2tLfX19WltbU1dXV+1x0vfYjmqPAGznXr6zd7VH2Cp1XOTTlUBZvS9pr/YISba+179s/ZwzAADsaEq8Bt7qvkMGAAAAAABgeyPIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFLZJQebYY4/NqlWr1lne1taWY4899s3OBAAAAAAAsF3ZpCCzcOHCdHR0rLP8lVdeyX/+53++6aEAAAAAAAC2J702ZuP//u//7vrzr3/96zQ3N3f9vHbt2syfPz/Dhg3bfNMBAAAAAABsBzYqyIwaNSo1NTWpqalZ76XJ+vbtm3/5l3/ZbMMBAAAAAABsDzYqyDz55JOpVCrZb7/9cv/992fgwIFd63r37p1BgwalZ8+em31IAAAAAACAbdlGBZm99947SdLZ2VlkGAAAAAAAgO3RRgWZP/bYY4/lrrvuyooVK9YJNNOnT3/TgwEAAAAAAGwvNinIXHfddTnrrLOyxx57ZPDgwampqelaV1NTI8gAAAAAAAD8kU0KMl/84hfzpS99KVOmTNnc8wAAAAAAAGx3emzKTv/zP/+Tj3zkI5t7FgAAAAAAgO3SJgWZj3zkI/nxj3+8uWcBAAAAAADYLm3SJcve+ta35qKLLsrPf/7zHHTQQdlpp526rf/Hf/zHzTIcAAAAAADA9mCTgsy1116bfv365e67787dd9/dbV1NTY0gAwAAAAAA8Ec2Kcg8+eSTm3sOAAAAAACA7dYmfYcMAAAAAAAAb9wmfULm4x//+J9df/3112/SMAAAAAAAANujTQoy//M//9Pt51dffTW/+tWvsmrVqhx77LGbZTAAAAAAAIDtxSYFmZtuummdZZ2dnTnrrLPylre85U0PBQAAAAAAsD3ZbN8h06NHjzQ1NeVrX/va5rpLAAAAAACA7cJmCzJJ8vjjj2fNmjWb8y4BAAAAAAC2eZt0ybKmpqZuP1cqlTz77LO59dZbM3HixM0yGAAAAAAAwPZik4LML3/5y24/9+jRIwMHDswVV1yRj3/845tlMAAAAAAAgO3FJgWZu+66a3PPAQAAAAAAsN3apCDzmpUrV+bRRx9Nkrz97W/PwIEDN8tQAAAAAAAA25Mem7LT6tWr8/GPfzxDhgzJu971rrzrXe/K0KFDc8YZZ+Sll17a3DMCAAAAAABs0zYpyDQ1NeXuu+/OD3/4w6xatSqrVq3Kf/zHf+Tuu+/OZz7zmc09IwAAAAAAwDZtky5Z9r//9//O97///bznPe/pWvaBD3wgffv2zUc/+tFcc801m2s+AAAAAACAbd4mfULmpZdeSkNDwzrLBw0a5JJlAAAAAAAAf2KTgkxjY2NmzJiRV155pWvZyy+/nC984QtpbGzcbMMBAAAAAABsDzbpkmVXXXVV3ve+92XPPffMIYcckiT5r//6r9TW1ubHP/7xZh0QAAAAAABgW7dJQeaggw7KY489ln//93/PI488kiQ5+eSTc8opp6Rv376bdUAAAAAAAIBt3SYFmZkzZ6ahoSFnnnlmt+XXX399Vq5cmSlTpmyW4QAAAAAAALYHm/QdMv/6r/+aESNGrLP8L/7iLzJ79uw3PRQAAAAAAMD2ZJOCTHNzc4YMGbLO8oEDB+bZZ59900MBAAAAAABsTzYpyAwfPjz33HPPOsvvueeeDB069E0PBQAAAAAAsD3ZpO+QOfPMM3Peeefl1VdfzbHHHpskWbBgQS688MJ85jOf2awDAgAAAAAAbOs2KchccMEF+d3vfpdPf/rT6ejoSJL06dMnU6ZMydSpUzfrgAAAAAAAANu6TQoyNTU1+fKXv5yLLroov/nNb9K3b9+87W1vS21t7eaeDwAAAAAAYJu3SUHmNf369ctf/uVfbq5ZAAAAAAAAtks9qj0AAAAAAADA9k6QAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAAAAAAKEyQAQAA2MbMmjUr++yzT/r06ZMxY8bk/vvvf0P7zZs3LzU1NTn++OPLDggAAKxDkAEAANiG3HDDDWlqasqMGTPy4IMP5pBDDsm4ceOyYsWKP7vfU089lfPPPz/vfOc7t9CkAADAHxNkAAAAtiFXXnllzjzzzJx++ukZOXJkZs+enZ133jnXX3/9BvdZu3ZtTjnllHzhC1/IfvvttwWnBQAAXiPIAAAAbCM6OjqyePHijB07tmtZjx49Mnbs2CxatGiD+1188cUZNGhQzjjjjDf0OO3t7Wlra+t2AwAA3hxBBgAAYBvx3HPPZe3atWloaOi2vKGhIc3Nzevd52c/+1m+9a1v5brrrnvDjzNz5szU19d33YYPH/6m5gYAAAQZAACA7dYLL7yQU089Ndddd1322GOPN7zf1KlT09ra2nVbvnx5wSkBAGDH0KvaAwAAAPDG7LHHHunZs2daWlq6LW9pacngwYPX2f7xxx/PU089lQkTJnQt6+zsTJL06tUrjz76aN7ylress19tbW1qa2s38/QAALBj8wkZAACAbUTv3r0zevToLFiwoGtZZ2dnFixYkMbGxnW2HzFiRB566KEsWbKk6/bXf/3XOeaYY7JkyRKXIgMAgC3IJ2QAAAC2IU1NTZk4cWIOP/zwHHHEEbnqqquyevXqnH766UmS0047LcOGDcvMmTPTp0+fHHjggd3279+/f5KssxwAAChLkAEAANiGnHTSSVm5cmWmT5+e5ubmjBo1KvPnz09DQ0OSZNmyZenRw8UQAABgayPIAAAAbGPOPvvsnH322etdt3Dhwj+775w5czb/QAAAwOvya1MAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFCTIAAAAAAACFVTXIzJw5M3/5l3+ZXXfdNYMGDcrxxx+fRx99tNs2r7zySiZNmpTdd989/fr1ywknnJCWlpZu2yxbtizjx4/PzjvvnEGDBuWCCy7ImjVrtuShAAAAAAAAbFBVg8zdd9+dSZMm5ec//3nuuOOOvPrqqznuuOOyevXqrm0mT56cH/7wh7nxxhtz991355lnnsmHP/zhrvVr167N+PHj09HRkXvvvTff+c53MmfOnEyfPr0ahwQAAAAAALCOmkqlUqn2EK9ZuXJlBg0alLvvvjvvete70tramoEDB2bu3Lk58cQTkySPPPJIDjjggCxatChHHnlkfvSjH+WDH/xgnnnmmTQ0NCRJZs+enSlTpmTlypXp3bv36z5uW1tb6uvr09ramrq6uqLH+Eb0Pbaj2iMA27mX73z958YdUcdFtdUeAdjO9b6kvdojJNn6Xv+y9XPOAACwoynxGnir+g6Z1tbWJMmAAQOSJIsXL86rr76asWPHdm0zYsSI7LXXXlm0aFGSZNGiRTnooIO6YkySjBs3Lm1tbXn44YfX+zjt7e1pa2vrdgMAAAAAAChlqwkynZ2dOe+883L00UfnwAMPTJI0Nzend+/e6d+/f7dtGxoa0tzc3LXNH8eY19a/tm59Zs6cmfr6+q7b8OHDN/PRAAAAAAAA/MFWE2QmTZqUX/3qV5k3b17xx5o6dWpaW1u7bsuXLy/+mAAAAAAAwI6rV7UHSJKzzz47t9xyS376059mzz337Fo+ePDgdHR0ZNWqVd0+JdPS0pLBgwd3bXP//fd3u7+WlpaudetTW1ub2lrfEwAAAAAAAGwZVf2ETKVSydlnn52bbropd955Z/bdd99u60ePHp2ddtopCxYs6Fr26KOPZtmyZWlsbEySNDY25qGHHsqKFSu6trnjjjtSV1eXkSNHbpkDAQAAAAAA+DOq+gmZSZMmZe7cufmP//iP7Lrrrl3f+VJfX5++ffumvr4+Z5xxRpqamjJgwIDU1dXlnHPOSWNjY4488sgkyXHHHZeRI0fm1FNPzeWXX57m5uZMmzYtkyZN8ikYAAAAAABgq1DVIHPNNdckSd7znvd0W/7tb387H/vYx5IkX/va19KjR4+ccMIJaW9vz7hx43L11Vd3bduzZ8/ccsstOeuss9LY2JhddtklEydOzMUXX7ylDgMAAAAAAODPqmqQqVQqr7tNnz59MmvWrMyaNWuD2+y999657bbbNudoAAAAAAAAm01Vv0MGAAAAAABgRyDIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAAAAAFCbIAAAAbGNmzZqVffbZJ3369MmYMWNy//33b3Db6667Lu985zuz2267ZbfddsvYsWP/7PYAAEAZggwAAMA25IYbbkhTU1NmzJiRBx98MIccckjGjRuXFStWrHf7hQsX5uSTT85dd92VRYsWZfjw4TnuuOPy9NNPb+HJAQBgxybIAAAAbEOuvPLKnHnmmTn99NMzcuTIzJ49OzvvvHOuv/769W7/7//+7/n0pz+dUaNGZcSIEfnmN7+Zzs7OLFiwYAtPDgAAOzZBBgAAYBvR0dGRxYsXZ+zYsV3LevTokbFjx2bRokVv6D5eeumlvPrqqxkwYMAGt2lvb09bW1u3GwAA8OYIMgAAANuI5557LmvXrk1DQ0O35Q0NDWlubn5D9zFlypQMHTq0W9T5UzNnzkx9fX3Xbfjw4W9qbgAAQJABAADYYVx22WWZN29ebrrppvTp02eD202dOjWtra1dt+XLl2/BKQEAYPvUq9oDAAAA8Mbsscce6dmzZ1paWrotb2lpyeDBg//svl/96ldz2WWX5Sc/+UkOPvjgP7ttbW1tamtr3/S8AADAH/iEDAAAwDaid+/eGT16dBYsWNC1rLOzMwsWLEhjY+MG97v88stzySWXZP78+Tn88MO3xKgAAMCf8AkZAACAbUhTU1MmTpyYww8/PEcccUSuuuqqrF69OqeffnqS5LTTTsuwYcMyc+bMJMmXv/zlTJ8+PXPnzs0+++zT9V0z/fr1S79+/ap2HAAAsKMRZAAAALYhJ510UlauXJnp06enubk5o0aNyvz589PQ0JAkWbZsWXr0+MPFEK655pp0dHTkxBNP7HY/M2bMyOc///ktOToAAOzQBBkAAIBtzNlnn52zzz57vesWLlzY7eennnqq/EAAAMDr8h0yAAAAAAAAhVU1yPz0pz/NhAkTMnTo0NTU1OTmm2/utr5SqWT69OkZMmRI+vbtm7Fjx+axxx7rts3zzz+fU045JXV1denfv3/OOOOMvPjii1vwKAAAAAAAAP68qgaZ1atX55BDDsmsWbPWu/7yyy/P17/+9cyePTv33Xdfdtlll4wbNy6vvPJK1zannHJKHn744dxxxx255ZZb8tOf/jSf/OQnt9QhAAAAAAAAvK6qfofM+9///rz//e9f77pKpZKrrroq06ZNy4c+9KEkyXe/+900NDTk5ptvzt/+7d/mN7/5TebPn59f/OIXOfzww5Mk//Iv/5IPfOAD+epXv5qhQ4dusWMBAAAAAADYkK32O2SefPLJNDc3Z+zYsV3L6uvrM2bMmCxatChJsmjRovTv378rxiTJ2LFj06NHj9x3330bvO/29va0tbV1uwEAAAAAAJSy1QaZ5ubmJElDQ0O35Q0NDV3rmpubM2jQoG7re/XqlQEDBnRtsz4zZ85MfX1912348OGbeXoAAAAAAIA/2GqDTElTp05Na2tr12358uXVHgkAAAAAANiObbVBZvDgwUmSlpaWbstbWlq61g0ePDgrVqzotn7NmjV5/vnnu7ZZn9ra2tTV1XW7AQAAAAAAlLLVBpl99903gwcPzoIFC7qWtbW15b777ktjY2OSpLGxMatWrcrixYu7trnzzjvT2dmZMWPGbPGZAQAAAAAA1qdXNR/8xRdfzNKlS7t+fvLJJ7NkyZIMGDAge+21V84777x88YtfzNve9rbsu+++ueiiizJ06NAcf/zxSZIDDjgg73vf+3LmmWdm9uzZefXVV3P22Wfnb//2bzN06NAqHRUAAAAAAEB3VQ0yDzzwQI455piun5uampIkEydOzJw5c3LhhRdm9erV+eQnP5lVq1blHe94R+bPn58+ffp07fPv//7vOfvss/NXf/VX6dGjR0444YR8/etf3+LHAgAAAAAAsCE1lUqlUu0hqq2trS319fVpbW3dKr5Ppu+xHdUeAdjOvXxn72qPsFXquKi22iMA27nel7RXe4QkW9/rX7Z+zhkAAHY0JV4Db7XfIQMAAAAAALC9EGQAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAKE2QAAAAAAAAK226CzKxZs7LPPvukT58+GTNmTO6///5qjwQAAFDExr7/ufHGGzNixIj06dMnBx10UG677bYtNCkAAPCa7SLI3HDDDWlqasqMGTPy4IMP5pBDDsm4ceOyYsWKao8GAACwWW3s+5977703J598cs4444z88pe/zPHHH5/jjz8+v/rVr7bw5AAAsGOrqVQqlWoP8WaNGTMmf/mXf5lvfOMbSZLOzs4MHz4855xzTj772c++7v5tbW2pr69Pa2tr6urqSo/7uvoe21HtEYDt3Mt39q72CFuljotqqz0CsJ3rfUl7tUdIsvW9/mXjbOz7n5NOOimrV6/OLbfc0rXsyCOPzKhRozJ79uw39JjOGQAAdjQlXgP32iz3UkUdHR1ZvHhxpk6d2rWsR48eGTt2bBYtWrTefdrb29Pe/oc3w62trUl+/xe8NaisEWSAstraBJn16Wjf5n9HAdjK9d5KXm++9rp3O/jdrB3Oprz/WbRoUZqamrotGzduXG6++eYNPs7W/p4JAABKK/G+aZsPMs8991zWrl2bhoaGbssbGhryyCOPrHefmTNn5gtf+MI6y4cPH15kRoCtTX19tScA2EF9Zet6An7hhRdS7x+FbcqmvP9pbm5e7/bNzc0bfBzvmQAA4Pd+97vfbbb3Tdt8kNkUU6dO7fYbYp2dnXn++eez++67p6ampoqTwcZra2vL8OHDs3z5cpePANiCPP+yLatUKnnhhRcydOjQao/CVupP3zOtWrUqe++9d5YtWybi8Yb4d5KN5ZxhYzln2FjOGTZWa2tr9tprrwwYMGCz3ec2H2T22GOP9OzZMy0tLd2Wt7S0ZPDgwevdp7a2NrW13b8noH///qVGhC2irq7OPyYAVeD5l22V/1TfNm3K+5/Bgwdv1PbJ+t8zJb8/bzznsTH8O8nGcs6wsZwzbCznDBurR48em+++Nts9VUnv3r0zevToLFiwoGtZZ2dnFixYkMbGxipOBgAAsHltyvufxsbGbtsnyR133OH9EgAAbGHb/CdkkqSpqSkTJ07M4YcfniOOOCJXXXVVVq9endNPP73aowEAAGxWr/f+57TTTsuwYcMyc+bMJMm5556bd7/73bniiisyfvz4zJs3Lw888ECuvfbaah4GAADscLaLIHPSSSdl5cqVmT59epqbmzNq1KjMnz9/nS+uhO1RbW1tZsyYsd5LSgBQjudfoFpe7/3PsmXLul1W4aijjsrcuXMzbdq0fO5zn8vb3va23HzzzTnwwAPf8GN6zmNjOWfYWM4ZNpZzho3lnGFjlThnaiqVSmWz3RsAAAAAAADr2Oa/QwYAAAAAAGBrJ8gAAAAAAAAUJsgAAAAAAAAUJsjAFlKpVPLJT34yAwYMSE1NTZYsWVKVOZ566qmqPj7A9u5jH/tYjj/++GqPAQAAAGxlBBnYQubPn585c+bklltuybPPPpsDDzyw2iMBAECXWbNmZZ999kmfPn0yZsyY3H///X92+xtvvDEjRoxInz59ctBBB+W2227bQpOytdiYc+a6667LO9/5zuy2227ZbbfdMnbs2Nc9x9j+bOzzzGvmzZuXmpoav/SyA9rYc2bVqlWZNGlShgwZktra2uy///7+fdrBbOw5c9VVV+Xtb397+vbtm+HDh2fy5Ml55ZVXttC0VNNPf/rTTJgwIUOHDk1NTU1uvvnm191n4cKFOeyww1JbW5u3vvWtmTNnzkY/riADW8jjjz+eIUOG5KijjsrgwYPTq1evao8EAABJkhtuuCFNTU2ZMWNGHnzwwRxyyCEZN25cVqxYsd7t77333px88sk544wz8stf/jLHH398jj/++PzqV7/awpNTLRt7zixcuDAnn3xy7rrrrixatCjDhw/Pcccdl6effnoLT061bOw585qnnnoq559/ft75znduoUnZWmzsOdPR0ZH3vve9eeqpp/L9738/jz76aK677roMGzZsC09OtWzsOTN37tx89rOfzYwZM/Kb3/wm3/rWt3LDDTfkc5/73BaenGpYvXp1DjnkkMyaNesNbf/kk09m/PjxOeaYY7JkyZKcd955+cQnPpHbb7994x64AhQ3ceLESpKu2957711Zu3Zt5dJLL63ss88+lT59+lQOPvjgyo033ti1z1133VVJUpk/f35l1KhRlT59+lSOOeaYSktLS+W2226rjBgxorLrrrtWTj755Mrq1au79vvRj35UOfrooyv19fWVAQMGVMaPH19ZunRp1/onn3yykqTyy1/+smvZQw89VHnf+95X2WWXXSqDBg2q/P3f/31l5cqVW+TvBqCa3v3ud1fOPvvsyrnnnlvp379/ZdCgQZVrr7228uKLL1Y+9rGPVfr161d5y1veUrntttsqlUqlsmbNmsrHP/7xrufu/fffv3LVVVd1u8+JEydWPvShD3X9/HrP9wBbgyOOOKIyadKkrp/Xrl1bGTp0aGXmzJnr3f6jH/1oZfz48d2WjRkzpvIP//APRedk67Gx58yfWrNmTWXXXXetfOc73yk1IluZTTln1qxZUznqqKMq3/zmN9d5jcX2b2PPmWuuuaay3377VTo6OrbUiGxlNvacmTRpUuXYY4/ttqypqaly9NFHF52TrU+Syk033fRnt7nwwgsrf/EXf9Ft2UknnVQZN27cRj2WT8jAFvDP//zPufjii7Pnnnvm2WefzS9+8YvMnDkz3/3udzN79uw8/PDDmTx5cv7+7/8+d999d7d9P//5z+cb3/hG7r333ixfvjwf/ehHc9VVV2Xu3Lm59dZb8+Mf/zj/8i//0rX96tWr09TUlAceeCALFixIjx498jd/8zfp7Oxc72yrVq3Ksccem0MPPTQPPPBA5s+fn5aWlnz0ox8t+ncCsLX4zne+kz322CP3339/zjnnnJx11ln5yEc+kqOOOioPPvhgjjvuuJx66ql56aWX0tnZmT333DM33nhjfv3rX2f69On53Oc+l+9973sbvP83+nwPUC0dHR1ZvHhxxo4d27WsR48eGTt2bBYtWrTefRYtWtRt+yQZN27cBrdn+7Ip58yfeumll/Lqq69mwIABpcZkK7Kp58zFF1+cQYMG5YwzztgSY7IV2ZRz5gc/+EEaGxszadKkNDQ05MADD8yll16atWvXbqmxqaJNOWeOOuqoLF68uOuyZk888URuu+22fOADH9giM7Nt2Vyvf10zCbaA+vr67LrrrunZs2cGDx6c9vb2XHrppfnJT36SxsbGJMl+++2Xn/3sZ/nXf/3XvPvd7+7a94tf/GKOPvroJMkZZ5yRqVOn5vHHH89+++2XJDnxxBNz1113ZcqUKUmSE044odtjX3/99Rk4cGB+/etfr/d7a77xjW/k0EMPzaWXXtptn+HDh+e3v/1t9t9//837lwGwlTnkkEMybdq0JMnUqVNz2WWXZY899siZZ56ZJJk+fXquueaa/Pd//3eOPPLIfOELX+jad999982iRYvyve99b70he2Oe7wGq5bnnnsvatWvT0NDQbXlDQ0MeeeSR9e7T3Ny83u2bm5uLzcnWY1POmT81ZcqUDB06dJ3/2GD7tCnnzM9+9rN861vfypIlS7bAhGxtNuWceeKJJ3LnnXfmlFNOyW233ZalS5fm05/+dF599dXMmDFjS4xNFW3KOfN3f/d3ee655/KOd7wjlUola9asyac+9SmXLGO9NvT6t62tLS+//HL69u37hu5HkIEqWLp0aV566aW8973v7ba8o6Mjhx56aLdlBx98cNefGxoasvPOO3fFmNeW/fEXlD322GOZPn167rvvvjz33HNdn4xZtmzZeoPMf/3Xf+Wuu+5Kv3791ln3+OOPCzLAdu+Pn2d79uyZ3XffPQcddFDXstdecL123eFZs2bl+uuvz7Jly/Lyyy+no6Mjo0aNWu99b8zzPQDsKC677LLMmzcvCxcuTJ8+fao9DluhF154Iaeeemquu+667LHHHtUeh21EZ2dnBg0alGuvvTY9e/bM6NGj8/TTT+crX/mKIMN6LVy4MJdeemmuvvrqjBkzJkuXLs25556bSy65JBdddFG1x2M7JchAFbz44otJkltvvXWdL5erra3t9vNOO+3U9eeamppuP7+27I8vRzZhwoTsvffeue666zJ06NB0dnbmwAMPTEdHxwZnmTBhQr785S+vs27IkCEbd2AA26D1Pa/+6XNv8vs3ePPmzcv555+fK664Io2Njdl1113zla98Jffdd99673tjnu8BqmWPPfZIz54909LS0m15S0tLBg8evN59Bg8evFHbs33ZlHPmNV/96ldz2WWX5Sc/+Um3X4pg+7ax58zjjz+ep556KhMmTOha9tr73l69euXRRx/NW97ylrJDU1Wb8jwzZMiQ7LTTTunZs2fXsgMOOCDNzc3p6OhI7969i85MdW3KOXPRRRfl1FNPzSc+8YkkyUEHHZTVq1fnk5/8ZP7pn/4pPXr4tg/+YEOvf+vq6t7wp2OSxFkFVTBy5MjU1tZm2bJleetb39rtNnz48E2+39/97nd59NFHM23atPzVX/1VDjjggPzP//zPn93nsMMOy8MPP5x99tlnnVl22WWXTZ4FYHt0zz335KijjsqnP/3pHHrooXnrW9+axx9/fIPbl3q+B9icevfundGjR2fBggVdyzo7O7NgwYKuyy3+qcbGxm7bJ8kdd9yxwe3ZvmzKOZMkl19+eS655JLMnz8/hx9++JYYla3Exp4zI0aMyEMPPZQlS5Z03f76r/86xxxzTJYsWeJ11A5gU55njj766CxdurTbL63+9re/zZAhQ8SYHcCmnDMvvfTSOtHltaD3++95hz/YXK9/fUIGqmDXXXfN+eefn8mTJ6ezszPveMc70tramnvuuSd1dXWZOHHiJt3vbrvtlt133z3XXntthgwZkmXLluWzn/3sn91n0qRJue6663LyySfnwgsvzIABA7J06dLMmzcv3/zmN7v9ZgnAju5tb3tbvvvd7+b222/Pvvvum3/7t3/LL37xi+y7777r3b7U8z3A5tbU1JSJEyfm8MMPzxFHHJGrrroqq1evzumnn54kOe200zJs2LDMnDkzSXLuuefm3e9+d6644oqMHz8+8+bNywMPPJBrr722mofBFrSx58yXv/zlTJ8+PXPnzs0+++zT9X1D/fr1W+/lk9n+bMw506dPn3Uuud2/f/8kWe+luNk+bezzzFlnnZVvfOMbOffcc3POOefksccey6WXXpp//Md/rOZhsAVt7DkzYcKEXHnllTn00EO7Lll20UUXZcKECf4/bAfw4osvZunSpV0/P/nkk1myZEkGDBiQvfbaK1OnTs3TTz+d7373u0mST33qU/nGN76RCy+8MB//+Mdz55135nvf+15uvfXWjXpcQQaq5JJLLsnAgQMzc+bMPPHEE+nfv38OO+ywN/XFYT169Mi8efPyj//4jznwwAPz9re/PV//+tfznve8Z4P7DB06NPfcc0+mTJmS4447Lu3t7dl7773zvve9z0czAf7EP/zDP+SXv/xlTjrppNTU1OTkk0/Opz/96fzoRz/a4D4lnu8BNreTTjopK1euzPTp09Pc3JxRo0Zl/vz5Xd+jtWzZsm6vDY866qjMnTs306ZNy+c+97m87W1vy8033+w/SncgG3vOXHPNNeno6MiJJ57Y7X5mzJiRz3/+81tydKpkY88Z2NhzZvjw4bn99tszefLkHHzwwRk2bFjOPffcTJkypVqHwBa2sefMtGnTUlNTk2nTpuXpp5/OwIEDM2HChHzpS1+q1iGwBT3wwAM55phjun5uampKkkycODFz5szJs88+m2XLlnWt33fffXPrrbdm8uTJ+ed//ufsueee+eY3v5lx48Zt1OPWVHz+CgAAAAAAoCi/egAAAAAAAFCYIAMAAAAAAFCYIAMAAAAAAFCYIAMAAAAAAFCYIAMAAAAAAFCYIAMAAAAAAFCYIAMAAAAAAFCYIAMAAAAAAFCYIAPAVutjH/tYjj/++GqPAQAAAABvmiADAAAAAABQmCADwHarUqlkzZo11R4DAAAAAAQZAF7fCy+8kFNOOSW77LJLhgwZkq997Wt5z3vek/POOy9J0t7envPPPz/Dhg3LLrvskjFjxmThwoVd+8+ZMyf9+/fP7bffngMOOCD9+vXL+973vjz77LNd26xduzZNTU3p379/dt9991x44YWpVCrd5ujs7MzMmTOz7777pm/fvjnkkEPy/e9/v2v9woULU1NTkx/96EcZPXp0amtr87Of/azo3w0AAAAAvBGCDACvq6mpKffcc09+8IMf5I477sh//ud/5sEHH+xaf/bZZ2fRokWZN29e/vu//zsf+chH8r73vS+PPfZY1zYvvfRSvvrVr+bf/u3f8tOf/jTLli3L+eef37X+iiuuyJw5c3L99dfnZz/7WZ5//vncdNNN3eaYOXNmvvvd72b27Nl5+OGHM3ny5Pz93/997r777m7bffazn81ll12W3/zmNzn44IML/a0AAAAAwBtXU/nTXz8GgD/ywgsvZPfdd8/cuXNz4oknJklaW1szdOjQnHnmmWlqasp+++2XZcuWZejQoV37jR07NkcccUQuvfTSzJkzJ6effnqWLl2at7zlLUmSq6++OhdffHGam5uTJEOHDs3kyZNzwQUXJEnWrFmTfffdN6NHj87NN9+c9vb2DBgwID/5yU/S2NjY9Tif+MQn8tJLL2Xu3LlZuHBhjjnmmNx888350Ic+tKX+igAAAADgdfWq9gAAbN2eeOKJvPrqqzniiCO6ltXX1+ftb397kuShhx7K2rVrs//++3fbr729PbvvvnvXzzvvvHNXjEmSIUOGZMWKFUl+H3ieffbZjBkzpmt9r169cvjhh3ddtmzp0qV56aWX8t73vrfb43R0dOTQQw/ttuzwww9/M4cMAAAAAJudIAPAm/Liiy+mZ8+eWbx4cXr27NltXb9+/br+vNNOO3VbV1NTs853xLze4yTJrbfemmHDhnVbV1tb2+3nXXbZ5Q3fLwAAAABsCYIMAH/Wfvvtl5122im/+MUvstdeeyX5/Sdafvvb3+Zd73pXDj300KxduzYrVqzIO9/5zk16jPr6+gwZMiT33Xdf3vWudyX5/SXLFi9enMMOOyxJMnLkyNTW1mbZsmV597vfvXkODgAAAAC2EEEGgD9r1113zcSJE3PBBRdkwIABGTRoUGbMmJEePXqkpqYm+++/f0455ZScdtppueKKK3LooYdm5cqVWbBgQQ4++OCMHz/+DT3Oueeem8suuyxve9vbMmLEiFx55ZVZtWpVtznOP//8TJ48OZ2dnXnHO96R1tbW3HPPPamrq8vEiRML/Q0AAAAAwJsnyADwuq688sp86lOfygc/+MHU1dXlwgsvzPLly9OnT58kybe//e188YtfzGc+85k8/fTT2WOPPXLkkUfmgx/84Bt+jM985jN59tlnM3HixPTo0SMf//jH8zd/8zdpbW3t2uaSSy7JwIEDM3PmzDzxxBPp379/DjvssHzuc5/b7McMAAAAAJtTTWVjLuAPAElWr16dYcOG5YorrsgZZ5xR7XEAAAAAYKvnEzIAvK5f/vKXeeSRR3LEEUektbU1F///du6YhoEYCqLgKoURmImBmNPVZmUUZhMKab6si2YQbP+kfZ4kyZzz8jIAAAAAeAdBBoCfrLVyzklrLWOM7L3Te789CwAAAABewWUZAAAAAABAsc/tAQAAAAAAAP9OkAEAAAAAACgmyAAAAAAAABQTZAAAAAAAAIoJMgAAAAAAAMUEGQAAAAAAgGKCDAAAAAAAQDFBBgAAAAAAoNgXhza6zB1CM7wAAAAASUVORK5CYII=",
1353
  "text/plain": [
1354
  "<Figure size 2000x1000 with 2 Axes>"
1355
  ]
@@ -1364,15 +1364,22 @@
1364
  "for container in ax[0].containers:\n",
1365
  " ax[0].bar_label(container,color='black',size=0.2)\n",
1366
  "\n",
1367
- "plt.pie(x=df.gender.value_counts(),labels=df.gender.value_counts().index \\\n",
1368
- " explode= )"
 
1369
  ]
1370
  },
1371
  {
1372
- "cell_type": "code",
1373
- "execution_count": null,
 
 
 
 
 
 
 
1374
  "metadata": {},
1375
- "outputs": [],
1376
  "source": []
1377
  }
1378
  ],
 
1111
  },
1112
  {
1113
  "cell_type": "code",
1114
+ "execution_count": 20,
1115
  "metadata": {},
1116
  "outputs": [
1117
  {
 
1123
  " dtype='object')"
1124
  ]
1125
  },
1126
+ "execution_count": 20,
1127
  "metadata": {},
1128
  "output_type": "execute_result"
1129
  }
 
1134
  },
1135
  {
1136
  "cell_type": "code",
1137
+ "execution_count": 21,
1138
  "metadata": {},
1139
  "outputs": [
1140
  {
 
1197
  },
1198
  {
1199
  "cell_type": "code",
1200
+ "execution_count": 22,
1201
  "metadata": {},
1202
  "outputs": [
1203
  {
 
1206
  "<Axes: ylabel='writing_score'>"
1207
  ]
1208
  },
1209
+ "execution_count": 22,
1210
  "metadata": {},
1211
  "output_type": "execute_result"
1212
  },
 
1253
  },
1254
  {
1255
  "cell_type": "code",
1256
+ "execution_count": 23,
1257
  "metadata": {},
1258
  "outputs": [
1259
  {
 
1344
  },
1345
  {
1346
  "cell_type": "code",
1347
+ "execution_count": 26,
1348
  "metadata": {},
1349
  "outputs": [
1350
  {
1351
  "data": {
1352
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABlkAAANBCAYAAABj09iHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFD0lEQVR4nOzdd5zcdZ0/8NfuJtnU3ZCQSkekSVNUiO0QEVT0LNg4BDw9C4dYsHDcz3bqyZ1XrCjKqWBBFBELKF0QSOi9Qwik92Q3bfv8/gisRPpmN5+Z3efz8ZjH7s73OzOvyQOyk3nN5/Ouq1QqlQAAAAAAAPCc1JcOAAAAAAAAUIuULAAAAAAAAH2gZAEAAAAAAOgDJQsAAAAAAEAfKFkAAAAAAAD6QMkCAAAAAADQB0oWAAAAAACAPlCyAAAAAAAA9MGw0gGqQU9PTxYuXJhx48alrq6udBwAABhQlUola9asyfTp01Nf73NXAAAAfaVkSbJw4cJst912pWMAAMAWNW/evGy77balYwAAANQsJUuScePGJdn4j8ympqbCaQAAYGC1trZmu+22630dDAAAQN8oWZLeLcKampqULAAADBm2ygUAANg8NmAGAAAAAADoAyULAAAAAABAHyhZAAAAAAAA+kDJAgAAAAAA0AdKFgAAAAAAgD5QsgAAAAAAAPSBkgUAAAAAAKAPlCwAAAAAAAB9oGQBAAAAAADoAyULAAAAAABAHyhZAAAAAAAA+kDJAgAAAAAA0AdKFgAAAAAAgD5QsgAAAAAAAPSBkgUAAAAAAKAPlCwAAAAAAAB9oGQBAAAAAADoAyULAAAAAABAHyhZAAAAAAAA+kDJAgAAAAAA0AdKFgAAAAAAgD5QsgAAAAAAAPSBkgUAAAAAAKAPlCwAAAAAAAB9oGQBAAAAAADoAyULAAAAAABAHyhZAAAAAAAA+kDJAgAAAAAA0AdKFgAAAAAAgD5QsgAAAAAAAPSBkgUAAAAAAKAPlCwAAAAAAAB9oGQBAAAAAADog2GlA/BEow7uKB2BGtI15yupG/+KNGx1UOko1JANl48oHQEAAAAAap6SBWrcsJ0+WzoCAAAAAMCQZLswAAAAAACAPlCyAAAAAAAA9IGSBQAAAAAAoA+ULAAAAAAAAH2gZAEAAAAAAOgDJQsAAAAAAEAfKFkAAAAAAAD6QMkCAAAAAADQB0oWAAAAAACAPlCyAAAAAAAA9IGSBQAAAAAAoA+ULAAAAAAAAH2gZAEAAAAAAOgDJQsAAAAAAEAfKFkAAAAAAAD6QMkCAAAAAADQB0oWAAAAAACAPlCyAAAAAAAA9IGSBQAAAAAAoA+ULAAAAAAAAH1QtGT54he/mLq6uk0uu+++e+/xtra2HH/88Zk4cWLGjh2bI444IkuWLNnkPubOnZvDDz88o0ePzuTJk/PpT386XV1dW/qpAAAAAAAAQ8yw0gFe8IIX5NJLL+39ediwv0b6xCc+kQsuuCDnnHNOmpub85GPfCRve9vbcs011yRJuru7c/jhh2fq1KmZOXNmFi1alGOOOSbDhw/PV7/61S3+XAAAAAAAgKGjeMkybNiwTJ069QnXt7S05Ic//GHOOuusHHzwwUmSH//4x9ljjz1y7bXX5sADD8zFF1+cu+++O5deemmmTJmS/fbbL1/+8pdz0kkn5Ytf/GJGjBixpZ8OAAAAAAAwRBSfyfLAAw9k+vTp2XnnnXPUUUdl7ty5SZKbbropnZ2dOeSQQ3rP3X333bP99ttn1qxZSZJZs2Zl7733zpQpU3rPOeyww9La2pq77rrrKR+zvb09ra2tm1wAAAAAAACei6IlywEHHJAzzjgjF154Yb73ve9lzpw5eeUrX5k1a9Zk8eLFGTFiRMaPH7/JbaZMmZLFixcnSRYvXrxJwfLY8ceOPZVTTjklzc3NvZftttuuf58YAAAAAAAw6BXdLuz1r3997/f77LNPDjjggOywww751a9+lVGjRg3Y45588sk58cQTe39ubW1VtAAAAAAAAM9J8e3CHm/8+PHZdddd8+CDD2bq1Knp6OjI6tWrNzlnyZIlvTNcpk6dmiVLljzh+GPHnkpjY2Oampo2uQAAAAAAADwXVVWyrF27NrNnz860adOy//77Z/jw4bnssst6j993332ZO3duZsyYkSSZMWNG7rjjjixdurT3nEsuuSRNTU3Zc889t3h+AAAAAABg6Ci6XdinPvWpvOlNb8oOO+yQhQsX5gtf+EIaGhpy5JFHprm5Oe9///tz4oknZsKECWlqasoJJ5yQGTNm5MADD0ySHHroodlzzz1z9NFH52tf+1oWL16cz372szn++OPT2NhY8qkBAAAAAACDXNGSZf78+TnyyCOzYsWKTJo0Ka94xSty7bXXZtKkSUmSr3/966mvr88RRxyR9vb2HHbYYfnud7/be/uGhoacf/75Oe644zJjxoyMGTMmxx57bL70pS+VekoAAAAAAMAQUVepVCqlQ5TW2tqa5ubmtLS0VMV8llEHd5SOAAxyGy4fUToCAAVV2+tfAHg6lUolH/rQh/LrX/86q1atyi233JL99ttvi+d4+OGHs9NOOxV7fACqU9GVLAAAAADwdC688MKcccYZueKKK7Lzzjtn6623Lh0JAHopWQAAAACoWrNnz860adPyspe9rHQUAHiC+tIBAAAAAODJvPe9780JJ5yQuXPnpq6uLjvuuGN6enpyyimnZKeddsqoUaOy77775te//nXvba644orU1dXloosuygtf+MKMGjUqBx98cJYuXZo//elP2WOPPdLU1JR/+Id/yPr163tvd+GFF+YVr3hFxo8fn4kTJ+aNb3xjZs+e/bT57rzzzrz+9a/P2LFjM2XKlBx99NFZvnz5gP15AFB9lCwAAAAAVKVvfvOb+dKXvpRtt902ixYtyg033JBTTjklP/nJT3Laaaflrrvuyic+8Ym85z3vyZVXXrnJbb/4xS/mO9/5TmbOnJl58+blne98Z77xjW/krLPOygUXXJCLL7443/72t3vPX7duXU488cTceOONueyyy1JfX5+3vvWt6enpedJsq1evzsEHH5wXvvCFufHGG3PhhRdmyZIleec73zmgfyYAVBfbhQEAAABQlZqbmzNu3Lg0NDRk6tSpaW9vz1e/+tVceumlmTFjRpJk5513ztVXX53vf//7+bu/+7ve237lK1/Jy1/+8iTJ+9///px88smZPXt2dt555yTJ29/+9vz5z3/OSSedlCQ54ogjNnnsH/3oR5k0aVLuvvvu7LXXXk/I9p3vfCcvfOEL89WvfnWT22y33Xa5//77s+uuu/bvHwYAVUnJAgAAAEBNePDBB7N+/fq89rWv3eT6jo6OvPCFL9zkun322af3+ylTpmT06NG9Bctj111//fW9Pz/wwAP5/Oc/n+uuuy7Lly/vXcEyd+7cJy1Zbrvttvz5z3/O2LFjn3Bs9uzZShaAIULJAgAAAEBNWLt2bZLkggsuyDbbbLPJscbGxk1+Hj58eO/3dXV1m/z82HWP3wrsTW96U3bYYYecfvrpmT59enp6erLXXnulo6PjKbO86U1vyn/+538+4di0adOe2xMDoGYpWQAAAACoCXvuuWcaGxszd+7cTbYG21wrVqzIfffdl9NPPz2vfOUrkyRXX331097mRS96Uc4999zsuOOOGTbMW2wAQ5XB9wAAAADUhHHjxuVTn/pUPvGJT+TMM8/M7Nmzc/PNN+fb3/52zjzzzD7f71ZbbZWJEyfmBz/4QR588MFcfvnlOfHEE5/2Nscff3xWrlyZI488MjfccENmz56diy66KP/4j/+Y7u7uPmcBoLao2QEAAACoGV/+8pczadKknHLKKXnooYcyfvz4vOhFL8q//uu/9vk+6+vrc/bZZ+ejH/1o9tprr+y222751re+lYMOOugpbzN9+vRcc801Oemkk3LooYemvb09O+ywQ173utelvt7nmgGGirpKpVIpHaK01tbWNDc3p6WlJU1NTaXjZNTBT77XJ0B/2XD5iNIRACio2l7/AgAA1Cq1OgAAAAAAQB8oWQAAAAAAAPpAyQIAAAAAANAHShYAAAAAAIA+ULIAAAAAAAD0gZIFAAAAAACgD5QsAAAAAAAAfTCsdAAAqBYdn2ssHYEa8vv7enL/iko+9bKG0lGoISO+3F46AgAAAP1IyQIA0Ad/v5sFwQAAADDUeXcAAAAAAACgD5QsAAAAAAAAfaBkAQAAAAAA6AMlCwAAAAAAQB8oWQAAAAAAAPpAyQIAAAAAANAHShYAAAAAAIA+ULIAAAAAAAD0gZIFAAAAAACgD5QsAAAAAAAAfaBkAQAAAAAA6AMlCwAAAAAAQB8oWQAAAAAAAPpgWOkAAAAAADDU9fRU0lOppJKkUkl6KpWN11cqqVSSyuO+TyUZ1lCX0SMaUldXVzI2wJCnZAEAAACAPujpqWT52vYsXdOe1g2daXn00tr26NcNXWlt68y69q6sbe/K+o7urGvvyrr27qzr6MqGju509VT6/Ph1dcnIYQ0Z09iQUSMaMmbEsN6vo0c0bLw0Dsvo4Ru/jhnRkHEjh2fSuMZMHteYSY9ehjfY7Aagr5QsAAAAAPA3Ort7srilLUta27KopS2LW9qyuHXj10UtG7KktT1L17Sls7vvJcnmqlSSDZ3d2dDZ3ef7qKtLtho9IpPGNmZy01+Ll8njRmby48qYKU0jM6bRW4kAf8vfjAAAAAAMSavWdeTBZWvz4NKNl7kr1z9aorRlxbr2VMr1J1tMpZKsXNeRles6ct+SNU977tZjG7Pz1mOy09ZjstOkR79uPSY7TBydxmENWygxQHVRsgAAAAAwaFUqlSxsaestUh5cujazl67Ng8vWZuW6jtLxasryte1ZvrY91z+8cpPr6+uS6eNHZaetxzyuhBmbnbcek23Gj0p9vbkxwOClZAEAAABgUFi+tj23zl2dexe3bixUlq3NQ8vWZX1H37fT4pn1VJL5qzZk/qoNueqB5ZscGzGsPrtPHZe9t2nO3ts0Z69tmrPb1HHmwACDhpIFAAAAgJqzvqMrd8xvyW3zV+e2eS25dd7qLFi9oXQs/kZHV09un9+S2+e39F43Ylh99pg6LnspXoBBQMkCAAAAQFXr7qnk/iVrctu81bn10csDS9emu2cIDE0ZhDq6enLb/Jbc9jTFyz7bjs/uU8fZagyoekoWAAAAAKpKa1tnrp29Ijc+siq3zludOxe02PJrkHuy4qVp5LC8dKeJmfG8iZmx88TsMW1c6uqULkB1UbIAAAAAUFRHV09unrsq1zy4PFc/uDy3z2+xSoW0tnXl0nuW5NJ7liRJxo8engN2mpAZO0/MjOdtnV2njFW6AMUpWQAAAADYoiqVSu5ZtKa3VLnh4ZVWqvCMVq/vzEV3LclFd20sXSaOGZEDd56YAx9d6bLL5LGFEwJDkZIFAAAAgAG3YPWGXP3Aslz94IrMmr08y9d2lI5EjVuxriMX3LEoF9yxKEkyeVxjZjxvYg7efXJevfvkNI0cXjghMBQoWQAAAADodz09ldz4yKpceOfi/Pm+pZmzfF3pSAxyS9e053e3Lszvbl2Y4Q11OWCniXntnlPy2j2nZPr4UaXjAYOUkgUAAACAftHV3ZOZs1fkwrsW55K7l2TZmvbSkRiiOrsrufrR7ei+8Pu78oLpTb2FywumN5eOBwwiShYAAAAA+qytszt/uX9ZLrxrcS67Z2laNnSWjgRPcNfC1ty1sDXfuPSBbDN+VG/hcsBOEzKsob50PKCGKVkAAAAAeE7Wtnfl8nuX5sI7F+WK+5YZWk9NWbB6Q86Y+XDOmPlwmkYOy6t3n5zXvWBqDt5jchqHNZSOB9QYJQsAAAAAz2hte1f+dMei/OnOxbn6weXp6OopHQk2W2tbV+8cl3Ejh+X1e03NW/bbJgfuPDH19XWl4wE1QMkCAAAAwJOqVCq59qGVOeemebnwzsVWrDCorWnryq9unJ9f3Tg/U5tG5k37TstbXriNGS7A01KyAAAAALCJ+avW59c3zc+5N8/PvJUbSseBLW5xa1tOv2pOTr9qTnabMi5H7L9N3vrCbTNpXGPpaECVUbIAAAAAkLbO7vzpzkU558b5mfXQilQqpRNBdbhvyZp89Y/35msX3pdX7Topb99/2xyyx5SMGFZfOhpQBZQsAAAAAEPYTY+szDk3zs8Fty/Kmvau0nGganX1VHL5vUtz+b1LM3708Lx53+k56sAdsuuUcaWjAQUpWQAAAACGmOVr2/OrG+fl1zfNz0PL1pWOAzVn9frOnDnrkZw565EcuPOEvPdlO+a1e05NQ31d6WjAFqZkAQAAABgi7lrYkh9d/XD+cPvCdHT1lI4Dg8K1D63MtQ+tzPTmkTnqwB1y5Eu3z4QxI0rHArYQJQsAAADAINbTU8kl9yzJj66ek+vmrCwdBwathS1t+a+L7ss3L3sgb9pnet77sh2z97bNpWMBA0zJAgAAADAIrW3vyi9vmJczZz6cuSvXl44DQ0ZHV0/OvXl+zr15fl64/fi892U75g17T8vwhvrS0YABoGQBAAAAGETmrlifH8+ck1/fON8geyjslrmrc8vcW/OVC+7JkS/dPu85YPtMbhpZOhbQj5QsAAAAAIPArNkr8qNr5uSye5akp1I6DfB4y9a051uXPZDvXfFg/n7fbfLPr35enjdpbOlYQD9QsgAAAADUqO6eSs6/fWG+f+VDuXtRa+k4wDPo7K7k3Jvn57xb5ucNe0/LCQc/P7tNHVc6FrAZlCwAAAAANaaruyfn3bIg371iduYsX1c6DvAc9VSS829flAvuWJTX7jElH33N87PXNs2lYwF9oGQBAAAAqBEdXT359U3z870rH8y8lRtKxwE2U6WSXHz3klx895IctNuknHDw87P/DluVjgU8B0oWAAAAgCrX0dWTX94wN9+7YnYWtrSVjgMMgCvuW5Yr7luWlz1vYj5y8C552fO2Lh0JeBaULAAAAABVqrO7J7+6cV5OvfxB5QoMETNnr8jM2Svy4h22ykcO3iUH7Ta5dCTgaShZAAAAAKpMd8/G4djfvvwB24LBEHXjI6vy3h/fkH22bc6nD9str3z+pNKRgCehZAEAAACoEj09lfzutgX51mUPGmgPJElun9+So394fV75/K3zr2/YI3tMayodCXgcJQsAAABAFZg5e3m+cv49uXtRa+koQBW66oHlOfxbV+VtL9o2nzp0t0xtHlk6EhAlCwAAAEBRc5avy79fcE8uvWdJ6ShAleupJL++aX7Ov31h3vfynXLcQc/LuJHDS8eCIU3JAgAAAFBAy/rOfOOy+/Ozax9JZ3eldByghrR19uS7V8zOL2+Yl4++5vn5hwO2z/CG+tKxYEhSsgAAAABsQV3dPfnptY/km5c9kNXrO0vHAWrYinUd+cLv78oZMx/OZw7bLa/fe1rpSDDkKFkAAAAAtpBL716Sr/7pnjy0zFB7oP/MWb4ux/385uy/w1b51zfsnv13mFA6EgwZShYAAACAAXbPotZ85YK7c82DK0pHAQaxmx5ZlSO+NyuH7z0tn3vjnpnaPLJ0JBj0lCwAAAAAA2TZmvb8z8X35Vc3zkuPsSvAFnLBHYty5f3L8onX7pr3vmzHNNTXlY4Eg5aSBQAAAKCfVSqV/Py6ufnPC+/Nmrau0nGAIWhte1e+fP7dOe+W+fn3t+ydfbcbXzoSDEpKFgAAAIB+9ODSNfmXc+/IjY+sKh0FIHcuaM1bv3tNjjpgh3z6dbulaeTw0pFgUFGyAAAAAPSD9q7unPrn2Tntitnp6O4pHQegV08l+em1j+Siuxbns2/cM3+/7/TSkWDQqC8dAAAAAKDWXT9nZd7wzavyrcseULAAVWvpmvZ89Be35OgfXpdHVqwrHQcGBSULAAAAQB+1bOjMyb+5Pe/6wazMXuYNS6A2XPXA8hz69b9sLIa7FMOwOZQsAAAAAH1wwe2Lcsj/XplfXD8vlUrpNADPTXtXT/73kvvzum/+JbNmrygdB2qWkgUAAADgOVi4ekP+6cwbcvxZN2fZmvbScQA2y0PL1uUf/u/afPH3d6Wts7t0HKg5Bt8DAAAAPAuVSiU/mfVIvnbhvVnX4Y1IYPCoVJIzZj6cqx5Ylq+/a7/ss+340pGgZljJAgAAAPAMlra25ZgfXZ8v/P4uBQswaM1eti5v++7MfOPS+9PVbVYLPBtKFgAAAICncdFdi/O6b16Vqx5YXjoKwIDr6qnkG5c+kCO+NzOzl60tHQeqnpIFAAAA4Ems7+jKv5x7ez7005uycl1H6TgAW9Rt81ty+LeuyhnXzEmlUikdB6qWkgUAAADgb9w2b3UO/9bVOfuGeaWjABTT1tmTL/7h7hzzo+uzqGVD6ThQlZQsAAAAAI/q6ankO5dv3CZnzvJ1peMAVIWrHliew77+l/zu1gWlo0DVUbIAAAAAJJm/an3e/YNr898X35+uHlvjADxea1tXPnb2rTn+rJuzer0tFOExShYAAABgyPvtLQvy+m9elesfXlk6CkBVu+D2RXnDN6/KLXNXlY4CVUHJAgAAAAxZrW2d+djZt+Tjv7w1a9q6SscBqAkLW9ryru9fmzNnPlw6ChSnZAEAAACGpHsXt+bvv311fnfrwtJRAGpOR3dPvvD7u3LCL27JunYlNUOXkgUAAAAYcn5364K89dSZeXjF+tJRAGraH25bmDefek0eWLKmdBQoQskCAAAADBld3T350h/uzsfOvjUbOrtLxwEYFB5cujZvPvWa/O7WBaWjwBanZAEAAACGhGVr2nPU/12XH10zp3QUgEFnfUd3Pnb2rfn87+5MR1dP6TiwxShZAAAAgEHvpkdW5U3fvjrXzVlZOgrAoPaTWY/kHd+flQWrN5SOAluEkgUAAAAY1H567SM58gfXZnFrW+koAEPCbfNW543fuipX3Le0dBQYcEoWAAAAYFBq6+zOp865LZ/77Z3p6LZ1DcCWtGp9Z953xg3530vuT6VSKR0HBsyw0gEAAAAA+tv8Vevz4Z/dlDsXtJaOAjBk9VSSb132QB5cuib/+879MnJ4Q+lI0O+sZAEAAAAGlasfWJ43fftqBQtAlfjjHYvzrh9cm2Vr2ktHgX6nZAEAAAAGjV/eMDfv/fH1WbW+s3QUAB7ntnmr85ZTr8l9i9eUjgL9SskCAAAADAr/fdF9OencO9LVY+9/gGq0YPWGvP17M3Pl/ctKR4F+o2QBAAAAalpHV08+8ctb850/P1g6CgDPYE17V953xg356bWPlI4C/ULJAgAAANSslg2dOfZH1+e8WxaUjgLAs9TdU8nnfntnvvSHu9Nj9SE1TskCAAAA1KT5q9bn7d+bmVkPrSgdBYA++NE1c/LBn96Y9R1dpaNAnylZAAAAgJpzx/yWvPW7M/PA0rWlowCwGS69Z2necdqsLG5pKx0F+kTJAgAAANSUy+9dknf9YFaWrWkvHQWAfnDXwta8+dSrc+eCltJR4DlTsgAAAAA142fXPpIP/OSmrO/oLh0FgH60pLU97/r+rFzz4PLSUeA5UbIAAAAAVa9SqeSUP92Tz/72znQbkgwwKK3r6M4/nnFDLrxzceko8KwpWQAAAICq1t1TySfPuS3fv/Kh0lEAGGAdXT05/qyb86sb55WOAs+KkgUAAACoWl3dPfno2bfkNzcvKB0FgC2ku6eSk869Pf93lXKd6qdkAQAAAKpSR1dPjvv5zbng9kWlowCwhVUqyVcuuCf/fdF9paPA01KyAAAAAFWnrbM7H/jJjbnk7iWlowBQ0Hf+/GC++Pu7UqmYx0V1UrIAAAAAVWV9R1fed8YNufL+ZaWjAFAFzpj5cP71vDvS06NoofooWQAAAICqsaatM8f+6PrMnL2idBQAqsgvrp+XT55zW7oVLVQZJQsAAABQFVrWd+Y9P7w+Nzy8qnQUAKrQebcsyAm/uDmd3T2lo0AvJQsAAABQ3Mp1HTny9Gtz27zVpaMAUMX+eMfifPinN6W9q7t0FEiiZAEAAAAKW7qmLe/+wazcvai1dBQAasBl9y7NP//Mihaqg5IFAAAAKGZRy4a8+/vX5v4la0tHAaCGXHbv0nz87FvNaKE4JQsAAABQxNI1bTnyB9fmoeXrSkcBoAZdcMeifObXt6dSUbRQjpIFAAAA2OJa1nfmmB9en4dXrC8dBYAadu7N8/O5391ZOgZDmJIFAAAA2KLWd3TlvWdcn3sXrykdBYBB4GfXzs1X/3hP6RgMUUoWAAAAYItp7+rOB39yU26Zu7p0FAAGkR/85aF8/ZL7S8dgCFKyAAAAAFtEd08lH/3FLbn6weWlowAwCH3zsgfyg7/MLh2DIUbJAgAAAAy4SqWSk869PRfdtaR0FAAGsa/+8d78dNbDpWMwhChZAAAAgAH35fPvya9vml86BgBDwOd/f1fOuXFe6RgMEUoWAAAAYEB949L786Nr5pSOAcAQUakk//KbO3L+7QtLR2EIULIAAAAAA+bH18zJNy59oHQMAIaY7p5KPvHLW/OX+5eVjsIgp2QBAAAABsSvb5qfL51/d+kYAAxRnd2VHP/zm3Pv4tbSURjElCwAAABAv7vk7iU56dzbU6mUTgLAULamvSvv+/ENWdraVjoKg5SSBQAAAOhXt89fnY/+4pZ092hYAChvYUtb3nfmDVnf0VU6CoNQ1ZQs//Ef/5G6urp8/OMf772ura0txx9/fCZOnJixY8fmiCOOyJIlSza53dy5c3P44Ydn9OjRmTx5cj796U+nq8v/LAAAAFDCgtUb8v4zb8yGzu7SUQCg150LWvPRX9yaHh8AoJ9VRclyww035Pvf/3722WefTa7/xCc+kT/84Q8555xzcuWVV2bhwoV529ve1nu8u7s7hx9+eDo6OjJz5syceeaZOeOMM/L5z39+Sz8FAAAAGPLWtHXmfT++IcvWtJeOAgBPcOk9S8wKo98VL1nWrl2bo446Kqeffnq22mqr3utbWlrywx/+MP/7v/+bgw8+OPvvv39+/OMfZ+bMmbn22muTJBdffHHuvvvu/OxnP8t+++2X17/+9fnyl7+cU089NR0dHaWeEgAAAAw5Xd09+eef35z7lqwpHQUAntIZMx/Oj6+ZUzoGg0jxkuX444/P4YcfnkMOOWST62+66aZ0dnZucv3uu++e7bffPrNmzUqSzJo1K3vvvXemTJnSe85hhx2W1tbW3HXXXU/5mO3t7Wltbd3kAgAAAPTd539/V656YHnpGADwjL58/t255O4lz3wiPAtFS5azzz47N998c0455ZQnHFu8eHFGjBiR8ePHb3L9lClTsnjx4t5zHl+wPHb8sWNP5ZRTTklzc3PvZbvtttvMZwIAAABD1w+vnpOzrptbOgYAPCs9leRjZ9+SOxe0lI7CIFCsZJk3b14+9rGP5ec//3lGjhy5RR/75JNPTktLS+9l3rx5W/TxAQAAYLC44r6l+eof7ykdAwCek/Ud3XnfGTdkweoNpaNQ44qVLDfddFOWLl2aF73oRRk2bFiGDRuWK6+8Mt/61rcybNiwTJkyJR0dHVm9evUmt1uyZEmmTp2aJJk6dWqWLFnyhOOPHXsqjY2NaWpq2uQCAAAAPDcPLl2bE35xS7p7KqWjAMBztnRNe9734xuypq2zdBRqWLGS5TWveU3uuOOO3Hrrrb2XF7/4xTnqqKN6vx8+fHguu+yy3tvcd999mTt3bmbMmJEkmTFjRu64444sXbq095xLLrkkTU1N2XPPPbf4cwIAAIChYvX6jvzTmTdkTVtX6SgA0Gf3LVmTj519ayoVHxigb4aVeuBx48Zlr7322uS6MWPGZOLEib3Xv//978+JJ56YCRMmpKmpKSeccEJmzJiRAw88MEly6KGHZs8998zRRx+dr33ta1m8eHE++9nP5vjjj09jY+MWf04AAAAwFHR19+Sff35zHl6xvnQUANhsl9+7NN+5/MGc8Jrnl45CDSpWsjwbX//611NfX58jjjgi7e3tOeyww/Ld736393hDQ0POP//8HHfccZkxY0bGjBmTY489Nl/60pcKpgYAAIDB7Uvn352Zs1eUjgEA/ebrl96ffbcbn1ftOql0FGpMXcU6qLS2tqa5uTktLS1VMZ9l1MEdpSMAg9yGy0eUjlCVOj5nFSQwsEZ8ub10hCTV9/oXqC2/u3VBPnb2raVjAEC/22r08Jz/0Vdmm/GjSkehhlT1ShYAAACgejy4dG3+9Td3lI4BRay++udpueYXm1w3bMK22eYDpyVJ1tx6YdbdfUU6lsxOpWNDtvvY2akfOfZp77PS052Wq8/K2ruvSM+6VWkYOyFj9npNml/27tTV1SVJWq77TVqvPzdJ0nzAEWl66dt6b9++8L6svPi7mXrM/6auvqE/ny4MSavWd+aff3ZTfvXhGWkc5v8pnh0lCwAAAPCMNnR0559/flPWdXSXjgLFDN96+0x517//9Yr6+t5vK53tGbXz/hm18/5ZfeWZz+r+Wq87N2tu/VMmHv6JjNh6+7QveiAr/vTN1DeOSdOL/z4dS+ek5eqfZ9LbP59UKll27pcycqcXZcSkHVPp6c6Ki07NxNd9RMEC/ei2+S35tz/cna++de/SUagRShYAAADgGf2/396R+5esLR0DyqpvSMPYrZ70UNNL3pwkaZt7+7O+u/YF92TULgdk9PNekiQZ1jwl6+/5SzoW3Z8k6VwxP8Mn7ZhRO+ybJBk+acd0rpifEZN2TOt152bkdi9I47RdN+cZAU/irOvm5kXbb5W3779t6SjUgPpnPgUAAAAYyn55w9z85uYFpWNAcV2rFmb+qcdkwWnvz7I//Fe6Wpdu1v01brNH2h65LZ0rN/7/1bH0obTNvzsjd94/STJi0o7pWrUgXa1L09WyNF0rF2TE1jukc9WirL3j0ox/5dGb/ZyAJ/fZ396Ruxe2lo5BDbCSBQAAAHhKdy9szed/d1fpGFBc47TdMvENn8jwCduke+3KtFzziyz++UmZ/r5TU984uk/32XTg29PTvj4LT//wxq3Henoy/lVHZ+wLXp0kGb71dhn/qmOy5JefS5KM/7tjM3zr7bLk7P+XrQ76x2yYc3NarjkrqR+WCYd8MCO326vfni8MdW2dPfnwz27KH054RZpHDS8dhyqmZAEAAACe1Nr2rhx/1s1p7+opHQWKG/W8F//1h8k7pXH6bpn/vfdl3b1XZ9y+h/bpPtffc1XW3X1Ftn7TpzJ80g7pWPJQVl12ehrGTszYvV+TJBn3wjdk3Avf0HubtXdclroRo9K4ze5ZcPqHM+2Y/033mhVZ/vuvZZsP/TB1w7wZDP1l7sr1+cQvb80Pj31x6urqSsehStkuDAAAAHhSJ/369sxZvq50DKhK9SPHZviEbdK1emGf72PVFT9O84Fvz5g9/y4jJu2YsXsdnHEveXNarj3nSc/vXt+SlmvOyoRDPpz2hfdn+ITpGT5hm4zcYZ9UurvSucq2ftDfLr93ab5z+YOlY1DFlCwAAADAE5xxzZxccMei0jGgavV0bEjX6kVpGDOhz/dR6WxP6jZ9e66urj6pPPnqsVWX/1/GveQtGda0dVLpTqW7+3GBupMeq85gIHz90vsz88HlpWNQpZQsAAAAwCZunbc6X/3jvaVjQFVZdfkP0zb3jnS1LEnb/Huy7Df/ntTVZ8yef5ck6V67Kh1LHkrnqo3lZMeyh9Ox5KF0b1jTex9Lzv7XtN70h96fR+3y0rTM/GXWz74hXS1Lsv7+mWm94bcZveuMJzz+hjm3pHPlgox70eFJkhFTd03XyvnZMPvGrLn1wqS+IcMmbDOQfwQwZPVUkk+ec1ta1neWjkIVMpMFAAAA6NWyvjPH//zmdHT7RDw8Xtea5Vn+h/9K94bWNIxqTuO2e2bq0f+ThtHNSZI1t/4xLdf8ovf8JWf9S5Jk4hs+nrF7H5Ik6Vy1OI0bWnvPmXDIh7L6qp9l5cXfTc/6ljSMnZCx+70+41/+7k0eu6ezPSsvPS2T/v6kjStdkgxr2jpbHfKhLP/TN1LXMDwTD/9E6oc3DuifAQxli1ra8tnf3ZlvH/nC0lGoMnWVSqVSOkRpra2taW5uTktLS5qamkrHyaiDO0pHAAa5DZePKB2hKnV8zj9IgIE14svtpSMkqb7Xv0B1Of7nN9smDACewjffvV/evJ9VY/yV7cIAAACAJMnvbl2gYAGAp/G5396Zhas3lI5BFVGyAAAAAFna2pbP/+6u0jEAoKq1tnXlk7+6LTaI4jFKFgAAACCfOff2tGww0BcAnsmsh1bk/66aUzoGVULJAgAAAEPcL66fmyvuW1Y6BgDUjP+6+L7cs6i1dAyqgJIFAAAAhrB5K9fnK+ffXToGANSUjq6efOKXt6a9q7t0FApTsgAAAMAQValU8qlzbsu6Dm8QAcBzde/iNfnvi+4rHYPClCwAAAAwRP3w6jm5bs7K0jEAoGb939VzMnP28tIxKEjJAgAAAEPQg0vX5r98+hYANkulknzqV7elZUNn6SgUomQBAACAIaaruyef/NWtae/qKR0FAGrewpY2882GMCULAAAADDHfvWJ2bpvfUjoGAAwa59w0P9c+tKJ0DApQsgAAAMAQcueClnz78gdKxwCAQef/nXdHOqwSHXKULAAAADBE9PRUcvJv7khnd6V0FAAYdGYvW5fvXvFg6RhsYUoWAAAAGCJ+dt0juWOBbcIAYKB894rZmb1sbekYbEFKFgAAABgClq1pz39fdF/pGAAwqHV09eT/nXdH6RhsQUoWAAAAGAK++sd70trWVToGAAx61z60MufcOK90DLYQJQsAAAAMcrNmr8h5tywoHQMAhoyv/vGerFzXUToGW4CSBQAAAAaxzu6efO53d5aOAQBDyqr1nfnKBXeXjsEWoGQBAACAQez0qx7Kg0sN4AWALe03Ny/IzNnLS8dggClZAAAAYJBasHpDvn3Zg6VjAMCQ9dnz7kx7V3fpGAwgJQsAAAAMUl/8/V3Z0OmNHQAo5aHl63Lq5T7wMJgpWQAAAGAQuuyeJbnk7iWlYwDAkHfalQ/l4eXrSsdggChZAAAAYJBp6+zOF35/V+kYAECSju6e/OeF95aOwQBRsgAAAMAg8+3LH8j8VRtKxwAAHvWnOxfnhodXlo7BAFCyAAAAwCAyb+X6nH7VnNIxAIC/8ZUL7kmlUikdg36mZAEAAIBB5H8uvi8dXT2lYwAAf+O2eavzh9sXlY5BP1OyAAAAwCBx54KW/O62haVjAABP4WsX3pv2ru7SMehHShYAAAAYJP7zwntjFxIAqF7zV23Ij695uHQM+pGSBQAAAAaBqx9YnqseWF46BgDwDE7984NZua6jdAz6iZIFAAAAalylUsl/XHhP6RgAwLOwpq0r37z0/tIx6CdKFgAAAKhxv79tYe5c0Fo6BgDwLP38urmZvWxt6Rj0AyULAAAA1LCOrp7810X3lY4BADwHXT2VnPLHe0vHoB8oWQAAAKCG/fTaRzJ/1YbSMQCA5+jSe5Zk1uwVpWOwmZQsAAAAUKNa2zrzncsfKB0DAOijf//j3alUKqVjsBmULAAAAFCjTrtidlat7ywdAwDoozsXtOaiu5aUjsFmULIAAABADVrc0pYfXTOndAwAYDN926rUmqZkAQAAgBr0zcvuT1tnT+kYAMBmumthay6922qWWqVkAQAAgBqzYPWG/Pqm+aVjAAD95FtWs9QsJQsAAADUmB9cOTud3YbkAsBgcfv8lvz53qWlY9AHShYAAACoIcvWtOfsG+aVjgEA9DOrWWqTkgUAAABqyA+vnpP2LrNYAGCwuWXu6vzl/mWlY/AcKVkAAACgRrRs6MzPrn2kdAwAYIB86zKrWWqNkgUAAABqxJkzH87a9q7SMQCAAXLjI6sy88HlpWPwHChZAAAAoAas7+jKj6+ZUzoGADDAvmE1S01RsgAAAEANOOu6uVm1vrN0DABggF0/Z2WufWhF6Rg8S0oWAAAAqHLtXd05/aqHSscAALYQs1lqh5IFAAAAqtyvb5qfJa3tpWMAAFvIzNkrctMjK0vH4FlQsgAAAEAV6+6p5LQrZ5eOAQBsYaf/xSy2WqBkAQAAgCr2+9sWZN7KDaVjAABb2MV3L868letLx+AZKFkAAACgin3vCqtYAGAo6qkkP77m4dIxeAZKFgAAAKhSMx9cnvuXrC0dAwAo5Fc3zsuats7SMXgaShYAAACoUj+Z9UjpCABAQWvbu/LLG+aVjsHTULIAAABAFVrUsiGX3LOkdAwAoLAzZz2cnp5K6Rg8BSULAAAAVKGzrpubbm+oAMCQN2/lhlx8tw9eVCslCwAAAFSZjq6e/OJ6W4MAABv9ZNbDpSPwFJQsAAAAUGX+dOeiLF/bXjoGAFAlZs5ekQeXrikdgyehZAEAAIAq81MD7wGAv3HmTK8PqpGSBQAAAKrI3Qtbc+Mjq0rHAACqzHm3LMja9q7SMfgbShYAAACoIj+99uHSEQCAKrS2vSvn3jS/dAz+hpIFAAAAqkRrW2d+d+vC0jEAgCr1k1kPl47A31CyAAAAQJX49Y3zs76ju3QMAKBKzV62Ljc+vLJ0DB5HyQIAAABVoFKp5GfXGmgLADy9c2+2ZVg1UbIAAABAFbjmwRV5aPm60jEAgCp3/u2L0tZp5Wu1ULIAAABAFTjnpnmlIwAANWBNW1cuvntJ6Rg8SskCAAAAha1r78rFd3mzBAB4ds69yZZh1ULJAgAAAIVddNfibLDtBwDwLF394PIsbW0rHYMoWQAAAKC4825ZUDoCAFBDunsqXj9UCSULAAAAFLR0TVtmzl5ROgYAUGPOvdmWYdVAyQIAAAAF/f7WhenuqZSOAQDUmPuXrM0d81tKxxjylCwAAABQ0G9vtdUHANA3v75pXukIQ56SBQAAAAp5cOma3LmgtXQMAKBG/f62heno6ikdY0hTsgAAAEAhv71lYekIAEANW7W+M5ffu7R0jCFNyQIAAAAFVCqV/O42W4UBAJvn3Jvnl44wpClZAAAAoIAbH1mVeSs3lI4BANS4K+5bmpb1naVjDFlKFgAAACjgvFusYgEANl9ndyWX37ekdIwhS8kCAAAAW1hHV0/+eMei0jEAgEHiojuVLKUoWQAAAGALu+qBZVltWw8AoJ9cef+ytHV2l44xJClZAAAAYAu76K7FpSMAAIPIhs7uXPXA8tIxhiQlCwAAAGxBPT2VXHbP0tIxAIBBxoc4ylCyAAAAwBZ04yOrsmJdR+kYAMAgc9k9S9LdUykdY8hRsgAAAMAWdLFPmQIAA2DV+s5cP2dl6RhDjpIFAAAAtqBL7llSOgIAMEjZMmzLU7IAAADAFnLv4tY8smJ96RgAwCB1yd0+zLGlKVkAAABgCzHwHgAYSAtWb8idC1pKxxhSlCwAAACwhVx+r5IFABhYtgzbspQsAAAAsAWsWteRW+auKh0DABjklCxblpIFAAAAtoAr71+WnkrpFADAYHf/krV5ePm60jGGDCULAAAAbAGX2SoMANhCrrjP644tRckCAAAAA6y7p5K/3L+sdAwAYIi4ZvaK0hGGDCULAAAADLCbHlmVlg2dpWMAAEPEdQ+tSLd9SrcIJQsAAAAMsKsfsIoFANhyWtu6cueCltIxhgQlCwAAAAywax9aWToCADDEzLRl2BahZAEAAIAB1NbZnVvnry4dAwAYYmbOXl46wpCgZAEAAIABdPPcVeno6ikdAwAYYm582GuQLUHJAgAAAAPoOluFAQAFbOjszs1zV5WOMegpWQAAAGAAXTfHfugAQBnmsgw8JQsAAAAMkPau7twyd3XpGADAEDXzQXNZBpqSBQAAAAbIrXNXp91e6ABAIbfNX531HV2lYwxqShYAAAAYINeaxwIAFNTZXcl1c7weGUhKFgAAABgg5rEAAKXNMpdlQClZAAAAYAB0dPXk5rmrSscAAIa4mbPNZRlIShYAAAAYALfNX522TvNYAICy7lm0Jhs6ukvHGLSULAAAADAArnvI1hwAQHndPZXctbCldIxBS8kCAAAAA8CQWQCgWtw2X8kyUJQsAAAA0M8qlUpunbu6dAwAgCTJ7fNXl44waClZAAAAoJ89smJ91rR3lY4BAJAkucNKlgGjZAEAAIB+dqd9zwGAKjJnxbq0tnWWjjEoKVkAAACgn925oLV0BACAXpWK1SwDRckCAAAA/ewuK1kAgCpzm7ksA0LJAgAAAP3s7oVWsgAA1eX2eT4EMhCULAAAANCPFq7ekBXrOkrHAADYxO1WsgwIJQsAAAD0o7usYgEAqtDClrYsX9teOsago2QBAACAfnTnAltxAADVyWqW/qdkAQAAgH5k6D0AUK1uM5el3ylZAAAAoB/ducB2YQBAdbKSpf8pWQAAAKCfrFjbnsWtbaVjAAA8qfuXrC0dYdBRsgAAAEA/udPQewCgii1s2ZC2zu7SMQYVJQsAAAD0E0PvAYBqVqkkDy1bVzrGoKJkAQAAgH7y4FJbcAAA1W32Mq9X+pOSBQAAAPrJnOU+GQoAVDcrWfqXkgUAAAD6ycMrvGkBAFS3h5ZbydKfipYs3/ve97LPPvukqakpTU1NmTFjRv70pz/1Hm9ra8vxxx+fiRMnZuzYsTniiCOyZMmSTe5j7ty5OfzwwzN69OhMnjw5n/70p9PV1bWlnwoAAABDXMv6zqxe31k6BgDA07JdWP8qWrJsu+22+Y//+I/cdNNNufHGG3PwwQfnzW9+c+66664kySc+8Yn84Q9/yDnnnJMrr7wyCxcuzNve9rbe23d3d+fwww9PR0dHZs6cmTPPPDNnnHFGPv/5z5d6SgAAAAxRVrEAALVgju3C+lVdpVKplA7xeBMmTMh//dd/5e1vf3smTZqUs846K29/+9uTJPfee2/22GOPzJo1KwceeGD+9Kc/5Y1vfGMWLlyYKVOmJElOO+20nHTSSVm2bFlGjBjxrB6ztbU1zc3NaWlpSVNT04A9t2dr1MEdpSMAg9yGy5/d349DTcfnGktHAAa5EV9uLx0hSfW9/oXB4ne3LsjHzr61dAwAgGd07cmvydTmkaVjDApVM5Olu7s7Z599dtatW5cZM2bkpptuSmdnZw455JDec3bfffdsv/32mTVrVpJk1qxZ2XvvvXsLliQ57LDD0tra2rsa5sm0t7entbV1kwsAAABsjoeXry8dAQDgWbFlWP8pXrLccccdGTt2bBobG/PhD3845513Xvbcc88sXrw4I0aMyPjx4zc5f8qUKVm8eHGSZPHixZsULI8df+zYUznllFPS3Nzce9luu+3690kBAAAw5DxiuzAAoEY8pGTpN8VLlt122y233nprrrvuuhx33HE59thjc/fddw/oY5588slpaWnpvcybN29AHw8AAIDBb46SBQCoEbPNZek3w0oHGDFiRHbZZZckyf77758bbrgh3/zmN/Oud70rHR0dWb169SarWZYsWZKpU6cmSaZOnZrrr79+k/tbsmRJ77Gn0tjYmMZG++4DAADQfx5ZYbswAKA22C6s/xRfyfK3enp60t7env333z/Dhw/PZZdd1nvsvvvuy9y5czNjxowkyYwZM3LHHXdk6dKlvedccsklaWpqyp577rnFswMAADA0tbZ1ZuW6jtIxAACelYesZOk3RVeynHzyyXn961+f7bffPmvWrMlZZ52VK664IhdddFGam5vz/ve/PyeeeGImTJiQpqamnHDCCZkxY0YOPPDAJMmhhx6aPffcM0cffXS+9rWvZfHixfnsZz+b448/3koVAAAAtpiHl3ujAgCoHYtaNqS7p5KG+rrSUWpe0ZJl6dKlOeaYY7Jo0aI0Nzdnn332yUUXXZTXvva1SZKvf/3rqa+vzxFHHJH29vYcdthh+e53v9t7+4aGhpx//vk57rjjMmPGjIwZMybHHntsvvSlL5V6SgAAAAxBD9sqDACoIT2VZNma9kxtHlk6Ss0rWrL88Ic/fNrjI0eOzKmnnppTTz31Kc/ZYYcd8sc//rG/owEAAMCz9oiVLABAjVnS2qZk6QdVN5MFAAAAas38VRtKRwAAeE6WtLaVjjAoKFkAAABgMy1b2146AgDAc7Jkjdcv/UHJAgAAAJtpuZIFAKgxS1qsZOkPShYAAADYTMt9EhQAqDG2C+sfShYAAADYTMvXdZSOAADwnNgurH8oWQAAAGAztKzvTEdXT+kYAADPyVIrWfqFkgUAAAA2g6H3AEAtsl1Y/1CyAAAAwGYw9B4AqEWr1nemvau7dIyap2QBAACAzaBkAQBq1dJWr2M2l5IFAAAANsMyQ2MBgBply7DNp2QBAACAzWAlCwBQq5ZYybLZlCwAAACwGZav6SgdAQCgT1asU7JsLiULAAAAbAYrWQCAWrW2vat0hJqnZAEAAIDNoGQBAGrVOiXLZlOyAAAAwGZYsc52YQBAbVrX3l06Qs1TsgAAAMBmWN/hzQkAoDbZLmzz9alkOfjgg7N69eonXN/a2pqDDz54czMBAABAzdigZAEAapTtwjZfn0qWK664Ih0dT1wO3dbWlquuumqzQwEAAEAtqFQqaetSsgAAtclKls037LmcfPvtt/d+f/fdd2fx4sW9P3d3d+fCCy/MNtts03/pAAAAoIq1dfakUimdAgCgb6xk2XzPqWTZb7/9UldXl7q6uifdFmzUqFH59re/3W/hAAAAoJpt6LSKBQCoXQbfb77nVLLMmTMnlUolO++8c66//vpMmjSp99iIESMyefLkNDQ09HtIAAAAqEZKFgCgltkubPM9p5Jlhx12SJL09PQMSBgAAACoJYbeAwC1bF2HkmVzPaeS5fEeeOCB/PnPf87SpUufULp8/vOf3+xgAAAAUO3arGQBAGqYmSybr08ly+mnn57jjjsuW2+9daZOnZq6urreY3V1dUoWAAAAhgTbhQEAtayzu5L2ru40DjMGpK/6VLJ85Stfyb//+7/npJNO6u88AAAAUDNsFwYA1Lq1bV1pHKtk6av6vtxo1apVecc73tHfWQAAAKCmrFeyAAA1zuuZzdOnkuUd73hHLr744v7OAgAAADXFTBYAoNZ19VRKR6hpfdoubJdddsnnPve5XHvttdl7770zfPjwTY5/9KMf7ZdwAAAAUM3MZAEAal1PRcmyOfpUsvzgBz/I2LFjc+WVV+bKK6/c5FhdXZ2SBQAAgCHBShYAoNZVlCybpU8ly5w5c/o7BwAAANQc70kAALXObmGbp08zWQAAAICkob6udAQAgM1iu7DN06eVLO973/ue9viPfvSjPoUBAACAWlKvZAEAaly3pSybpU8ly6pVqzb5ubOzM3feeWdWr16dgw8+uF+CAQAAQLVrqFOyAAOjaeSwTB8/KluPbYy/aoCBNGZEn2oCHtWnP73zzjvvCdf19PTkuOOOy/Oe97zNDgUAAAC1oMEm3EAfjB7RkGnNIzN9/KhMax6Zac2jMn38pl/HNHrTE6AW9Nvf1vX19TnxxBNz0EEH5TOf+Ux/3S0AAABUrXofLwf+xoiG+kxtHrlpiTJ+VKY/WqZsM35UmkcPLx0TgH7Sr5X47Nmz09XV1Z93CQAAAFXL4HsYWhrq6zJ5XGNvgfJkK1G2HjsidQpYgCGjTyXLiSeeuMnPlUolixYtygUXXJBjjz22X4IBAABAtVOywOBRV5dMHNP4aFny5Ft4TWka6f97ADbRp5Lllltu2eTn+vr6TJo0Kf/zP/+T973vff0SDAAAAKqd7cKgdjSPGr7JFl6PX4WyzfhRmdLcmMZhDaVjAlBj+lSy/PnPf+7vHAAAAFBzfKIdqsPjB8lPbx6VaeNH9n59bCXK6BEGyQPQ/zbrt8uyZcty3333JUl22223TJo0qV9CAQAAQC2wkgUG3ohh9Y+uOHlicTKteWOpYpA8AKX0qWRZt25dTjjhhPzkJz9JT09PkqShoSHHHHNMvv3tb2f06NH9GhIAAACqkYUssHka6usyZVxjpj3JFl7Tx2/8eeIYg+QBqF59Hnx/5ZVX5g9/+ENe/vKXJ0muvvrqfPSjH80nP/nJfO973+vXkAAAAFCNbBcGT+3xg+SfaguvyeMMkgegtvWpZDn33HPz61//OgcddFDvdW94wxsyatSovPOd71SyAAAAMCTUe3OYIWz86OGPbtc18km38JraPDIjhtWXjgkAA6pPJcv69eszZcqUJ1w/efLkrF+/frNDAQAAQC0YOayhdAQYEGNGNPx1Cy+D5AHgKfXpt+GMGTPyhS98IT/5yU8ycuTIJMmGDRvyb//2b5kxY0a/BgQAAIBqNW6kN5mpPX87SH76+CeWKM2jDJIHgGejT68Gv/GNb+R1r3tdtt122+y7775Jkttuuy2NjY25+OKL+zUgAAAAVCtvRFNthtXXZUrTxgJl2vhHt/Lq/X5jiWKQPAD0nz6VLHvvvXceeOCB/PznP8+9996bJDnyyCNz1FFHZdSoUf0aEAAAAKpV00glC1tOXV2y9djGR4sTg+QBoBr0qWQ55ZRTMmXKlHzgAx/Y5Pof/ehHWbZsWU466aR+CQcAAADVbNzIYamrSyqV0kkYDP52kPz0x1afNG/8fkqTQfIAUG36VLJ8//vfz1lnnfWE61/wghfk3e9+t5IFAACAIaG+vi5jRwzLmvau0lGocmMbh/3NFl6brkSZ3jwqo0Y0lI4JADxHfSpZFi9enGnTpj3h+kmTJmXRokWbHQoAAABqRdOo4UqWIa6xd5D8E4sTg+QBYHDrU8my3Xbb5ZprrslOO+20yfXXXHNNpk+f3i/BAAAAoBaMG9mnf1pTI55skPz08X/dwmta88hMHNtYOiYAUEifXgl+4AMfyMc//vF0dnbm4IMPTpJcdtll+cxnPpNPfvKT/RoQAAAAqlmTFQo1q3eQ/OO28Jo+ftMVKZPHNabeIHkA4Cn0qWT59Kc/nRUrVuSf//mf09HRkSQZOXJkTjrppJx88sn9GhAAAACqWdNIJUu12uqxQfJ/U5wYJA8A9Jc+lSx1dXX5z//8z3zuc5/LPffck1GjRuX5z39+GhstjwUAAGBoaRplu7ASnmyQ/PTxf93Ca5pB8gDAFrBZrwTHjh2bl7zkJf2VBQAAAGqOlSz9r3FY/SZlyRNWoowf6c8dAKgKPm4DAAAAm8FMlufmsUHyT7WFl0HyAEAtUbIAAADAZmga6Z/Wj6l/dJD8U23hNX38qEwaa5A8ADB4eCUIAAAAm2H86BGlI2wxW40e/mhh8tctvHpXpDSPzNTmkRneYJA8ADB0KFkAAABgM0xpGhxbW41rHJZpT1KcPH4VysjhBskDADyekgUAAAA2w9SmkaUjPKOnGiT/+K28xhkkDwDwnClZAAAAYDNMaS5bsjx+kPzfbuX12AqUCWOGzpZmMOhUKsm65Ul7a+kkwGA2bGTSvE3pFDVJyQIAAACboWnk8Iwe0ZD1Hd39ft/1dcmkcY1Pu4WXQfJQ4zasSloWJK0Lkpb5j359/M8Lk+720imBwW6b/ZMPXF46RU1SsgAAAMBmmtI0MnOWr3vOt5swZsTTbuE1pckgeahpHeseLUzmP3WR0rG2dEqApM7rjb5SsgAAAMBmmtLU+ISS5bFB8r1beDWPzLTxf/06rXmkQfJQy7o6NpYkjxUmLfOeuAqlbXXplADPjpKlz5QsAAAAsJmOnbFj3rzfNpts5WWQPNSwnu5kzaKnX4WyblmSSumkAP1DydJnShYAAADYTK/fe1rpCMCzValsLEg22bbrb4qUNYuTSv/PWQKoWkqWPlOyAAAAADB4bDJIft7jvn+0TGldZJA8wN9SsvSZkgUAAACA2tC+9kmGx8/ftEjpXPfM9wPAppQsfaZkAQAAAKC8rvYnDo7f5Od5SVtL6ZQAg9OIMaUT1CwlCwAAAAAD6wmD5J9kmPy65TFIHqAQJUufKVkAAAAA6LtKJVm79InD4x+/CsUgeYDqpmTpMyULAAAAAE9t/cqnnn/SOj9pXZh0d5ROCcDmGDG2dIKapWQBAAAAGKqebJB8y/zHlSkLDZIHGAqULH2mZAEAAAAYjLra/2bbridZhWKQPACJ7cI2g5IFAAAAoNZ0d20cJP9k808MkgfguVKy9JmSBQAAAKCaPNUg+ceXKWuXGCQPQP9pHFc6Qc1SsgAAAABsSetXPq4weZJVKGsWGSQPwJZlJUufKVkAAAAA+kv7mqeef/LYz53rS6cEgE0pWfpMyQIAAADwbHS2bSxJ/rY4efxqlHaD5AGoQSNsF9ZXShYAAACAxwbJP+k2Xo+WKeuXl04JAAPDSpY+U7IAAAAAg1ulsnFQ/BO28Xr8IPnFSaWndFIAKEPJ0mdKFgAAAKC2PdUg+Zb5G0uV1kVJT2fplABQvUZtVTpBzVKyAAAAANWrfc3GsuSpVqG0LjRIHgA2x4ixSePY0ilqlpIFAAAAKOOxQfJPNv/EIHkA2DLGTi6doKYpWQAAAID+192VrFn4JPNP5v/1+/UrSqcEAMZOLZ2gpilZAAAAgOempydZt/TRuSfznnwVytolBskDQC2wkmWzKFkAAACATa1b8eTzTx4rUgySB4DBY5yVLJtDyQIAAABDSVvrU8w/eWwbr4VJ14bSKQGALcVKls2iZAEAAIDBonPDxpLk8XNPNlmFsiBpby2dEgCoJmaybBYlCwAAANSC7s6NBcpTrUIxSB4A6IuxU0onqGlKFgAAACitp2fjoPgnm3/S8uh165YaJA8A9L9xSpbNoWQBAACAgdY7SH7+k6xCWZCsMUgeACjESpbNomQBAACA/tDTk9x85pNs52WQPABQpeoaktFbl05R05QsAAAA0B/q65NLPm+wPABQO8ZM2vgahj7zpwcAAAD9pXm70gkAAJ69pmmlE9Q8JQsAAAD0l/FKFgCghkzYuXSCmqdkAQAAgP5iJQsAUEsmPK90gpqnZAEAAID+YiULAFBLJipZNpeSBQAAAPqLlSwAQC2xkmWzKVkAAACgv2y1Y+kEAADPnpUsm03JAgAAAP1l611LJwAAeHZGjk9GTyidouYpWQAAAKC/NI5NmrYtnQIA4JlZxdIvlCwAAADQnyZZzQIA1IAJO5dOMCgoWQAAAKA/Tdq9dAIAgGdm6H2/ULIAAABAfzKXBQCoBbYL6xdKFgAAAOhPVrIAALXASpZ+oWQBAACA/jRpt9IJAACe2UQzWfqDkgUAAAD60+gJyZhJpVMAADy10ROTUVuVTjEoKFkAAACgv9kyDACoZlP2Kp1g0FCyAAAAQH/betfSCQAAntq0fUonGDSULAAAANDfrGQBAKrZtP1KJxg0lCwAAADQ3yZZyQIAVLGpVrL0FyULAAAA9LdJe5ROAADw5IaPSSbuUjrFoKFkAQAAgP42bkoyblrpFAAATzR1r6ReNdBf/EkCAADAQNhm/9IJAACeyFZh/UrJAgAAAANByQIAVKNpSpb+pGQBAACAgaBkAQCqkZUs/UrJAgAAAANh+guTOv/sBgCqSP3wZPKepVMMKl7tAQAAwEAY2ZRMfH7pFAAAfzV592TYiNIpBhUlCwAAAAwUW4YBANVk6r6lEww6ShYAAAAYKNu8qHQCAIC/mqZk6W9KFgAAABgoVrIAANVk+wNKJxh0lCwAAAAwUKbunQwbWToFAEDS2JxM2bt0ikFHyQIAAAADpWH4xqIFAKC07Q9I6lUC/c2fKAAAAAwkW4YBANVgh5eVTjAoKVkAAABgIG3z4tIJAACSHV5eOsGgpGQBAACAgbTjK0onAACGuuGjk+kvLJ1iUFKyAAAAwEBqmpZsvWvpFADAULbtizfOiqPfKVkAAABgoO30d6UTAABDma3CBoySBQAAAAbazkoWAKAgQ+8HTNGS5ZRTTslLXvKSjBs3LpMnT85b3vKW3HfffZuc09bWluOPPz4TJ07M2LFjc8QRR2TJkiWbnDN37twcfvjhGT16dCZPnpxPf/rT6erq2pJPBQAAAJ7ajq9I6nzOEQAooGFEsu1LSqcYtIq+wrvyyitz/PHH59prr80ll1ySzs7OHHrooVm3bl3vOZ/4xCfyhz/8Ieecc06uvPLKLFy4MG9729t6j3d3d+fwww9PR0dHZs6cmTPPPDNnnHFGPv/5z5d4SgAAAPBEo7ZKpu1bOgUAMBRNf2EyfFTpFINWXaVSqZQO8Zhly5Zl8uTJufLKK/OqV70qLS0tmTRpUs4666y8/e1vT5Lce++92WOPPTJr1qwceOCB+dOf/pQ3vvGNWbhwYaZMmZIkOe2003LSSSdl2bJlGTFixDM+bmtra5qbm9PS0pKmpqYBfY7PxqiDO0pHAAa5DZc/89+NQ1HH5xpLRwAGuRFfbi8dIUn1vf6FIeOSLyTXfKN0CgBgqHn5x5PX/lvpFINWVa1VbmlpSZJMmDAhSXLTTTels7MzhxxySO85u+++e7bffvvMmjUrSTJr1qzsvffevQVLkhx22GFpbW3NXXfdtQXTAwAAwNMwlwUAKGHHV5ZOMKgNKx3gMT09Pfn4xz+el7/85dlrr72SJIsXL86IESMyfvz4Tc6dMmVKFi9e3HvO4wuWx44/duzJtLe3p739r58ibG1t7a+nAQAAAE9u+xlJQ2PSXR2r2gCAIWDYqGTHl5dOMahVzUqW448/PnfeeWfOPvvsAX+sU045Jc3Nzb2X7bbbbsAfEwAAgCFu+Khku5eWTgEADCU7vco8lgFWFSXLRz7ykZx//vn585//nG233bb3+qlTp6ajoyOrV6/e5PwlS5Zk6tSpvecsWbLkCccfO/ZkTj755LS0tPRe5s2b14/PBgAAAJ7CTrYMAwC2oF0PLZ1g0CtaslQqlXzkIx/Jeeedl8svvzw77bTTJsf333//DB8+PJdddlnvdffdd1/mzp2bGTNmJElmzJiRO+64I0uXLu0955JLLklTU1P23HPPJ33cxsbGNDU1bXIBAACAAWcuCwCwJT3/sNIJBr2iM1mOP/74nHXWWfnd736XcePG9c5QaW5uzqhRo9Lc3Jz3v//9OfHEEzNhwoQ0NTXlhBNOyIwZM3LggQcmSQ499NDsueeeOfroo/O1r30tixcvzmc/+9kcf/zxaWxsLPn0AAAAYFPTX5Q0NiXtZoMCAANs8p7JeKMyBlrRlSzf+9730tLSkoMOOijTpk3rvfzyl7/sPefrX/963vjGN+aII47Iq171qkydOjW/+c1veo83NDTk/PPPT0NDQ2bMmJH3vOc9OeaYY/KlL32pxFMCAACAp9YwLNnlkNIpAICh4PmvLZ1gSCi6kqVSqTzjOSNHjsypp56aU0899SnP2WGHHfLHP/6xP6MBAADAwNj98OSu3zzzeQAAm8NWYVtEVQy+BwAAgCHj+YcmDSNKpwAABrORzcl2B5ROMSQoWQAAAGBLGtmU7PjK0ikAgMHsea/ZuE0pA07JAgAAAFva7oeXTgAADGa72ipsS1GyAAAAwJa2++FJ6kqnAAAGo7r6ZBdD77cUJQsAAABsaeOmJtvsXzoFADAYbbN/MmZi6RRDhpIFAAAASrBlGAAwEHZ7fekEQ4qSBQAAAErY/Y2lEwAAg9EL3lY6wZCiZAEAAIASJu2aTHx+6RQAwGAy/UXJhJ1KpxhSlCwAAABQyh5WswAA/WivI0onGHKULAAAAFCKLcMAgP5SV5/sZauwLU3JAgAAAKVss3/StG3pFADAYLD9jKRpeukUQ46SBQAAAEqpq0v2eUfpFADAYGAVSxFKFgAAAChpn3eXTgAA1Lr6YcmebymdYkhSsgAAAEBJk3dPpu1XOgUAUMt2elUyZuvSKYYkJQsAAACUtu+RpRMAALVsryNKJxiylCwAAABQ2t5v37jNBwDAc9UwItnjTaVTDFlKFgAAAChtzNbJLoeUTgEA1KJdDklGNpdOMWQpWQAAAKAa7Pvu0gkAgFpkq7CilCwAAABQDXZ9vU+hAgDPzcjxye5vLJ1iSFOyAAAAQDUYPjLZ8y2lUwAAtWSfd218DUExShYAAACoFvseWToBAFBL9n9v6QRDnpIFAAAAqsX2ByZb7Vg6BQBQC7Z9aTJlz9IphjwlCwAAAFSLurpkn3eXTgEA1AKrWKqCkgUAAACqyYuOTuoaSqcAAKrZyOZkr7eVTkGULAAAAFBdmrdNdnt96RQAQDXb+53J8FGlUxAlCwAAAFSfl36gdAIAoJrZKqxqKFkAAACg2ux8ULL1bqVTAADVaJsXJ1P3Kp2CRylZAAAAoBq95J9KJwAAqtH+x5ZOwOMoWQAAAKAa7XdkMmJc6RQAQDVpbEr2OqJ0Ch5HyQIAAADVqHFcsu+7SqcAAKrJ3m9PRowpnYLHUbIAAABAtXrJB0onAACqidcGVUfJAgAAANVq8u7Jjq8snQIAqAbPe00yZc/SKfgbShYAAACoZi/9YOkEAEA1eNkJpRPwJJQsAAAAUM12Pzxp2rZ0CgCgpKl7J897dekUPAklCwAAAFSz+obkxe8tnQIAKGmGVSzVSskCAAAA1e7F70+GjymdAgAooWmbZK8jSqfgKShZAAAAoNqNnpDsf2zpFABACQd8OGkYVjoFT0HJAgAAALXgZSckDSNKpwAAtqTGpmT/95ZOwdNQsgAAAEAtaJqe7Pvu0ikAgC3pRcckI5tKp+BpKFkAAACgVrz840ldQ+kUAMCWUD88OfCfS6fgGShZAAAAoFZMfF6y55tLpwAAtoQXvDVp3qZ0Cp6BkgUAAABqySs/WToBALAlvOyE0gl4FpQsAAAAUEum7pU8/7DSKQCAgbTLIcm0fUqn4FlQsgAAAECtedWnSicAAAbSq/+1dAKeJSULAAAA1JrtXprs8IrSKQCAgbDr65Nt9i+dgmdJyQIAAAC16JUnlk4AAPS7OqtYaoySBQAAAGrRLq9Jpr+wdAoAoD/t8SazWGqMkgUAAABq1UEnl04AAPSXunqrWGqQkgUAAABq1a6HJTu8vHQKAKA/vOBtyeQ9SqfgOVKyAAAAQC075N9KJwAANlddgxWqNUrJAgAAALVsu5cku7+xdAoAYHPs865k611Kp6APlCwAAABQ617z+Y2fgAUAak/9sOTvPlM6BX2kZAEAAIBaN2m3ZL8jS6cAAPpiv39IJuxUOgV9pGQBAACAweCgf02GjSydAgB4LhpGJK+yiqWWKVkAAABgMGjeJnnpB0qnAACei5d8IBm/XekUbAYlCwAAAAwWrzgxGdlcOgUA8GyMnmgWyyCgZAEAAIDBYvSE5OUfL50CAHg2Xv2vyajxpVOwmZQsAAAAMJgceFwyblrpFADA05m8Z7L/P5ZOQT9QsgAAAMBgMnxUctC/lE4BADydw76a1DeUTkE/ULIAAADAYPPCY5Jp+5ZOAQA8mV1fnzzv1aVT0E+ULAAAADDY1Ncnb/jvJHWlkwAAj1c/PDns30unoB8pWQAAAGAw2u6lyX7/UDoFAPB4B3womfi80inoR0oWAAAAGKwO+bdkZHPpFABAkoyemPzdZ0qnoJ8pWQAAAGCwGjspefX/K50CAEg2/k724YdBR8kCAAAAg9lL/imZsnfpFAAwtE1+QbL/e0unYAAoWQAAAGAwq29I3vBfpVMAwND2uq9u/J3MoKNkAQAAgMFuhxnJPu8unQIAhqZ93p3sfFDpFAwQJQsAAAAMBa/9UtLYVDoFAAwtoycmh321dAoGkJIFAAAAhoJxU5KDTi6dAgCGlsNOScZMLJ2CAaRkAQAAgKHipR9MJu9ZOgUADA3Pe02y77tKp2CAKVkAAABgqGgYlrzpm0mdtwMAYEANH5O88eulU7AFeFUFAAAAQ8l2L00OOK50CgAY3F79r8lWO5ROwRagZAEAAICh5jWfSyY8r3QKABicpr8wOdAHGoYKJQsAAAAMNcNHJW8+1bZhANDf6oclb/pWUt9QOglbiFdTAAAAMBTtMCN56YdKpwCAwWXG8cm0fUqnYAtSsgAAAMBQ9ZrPJ1vtVDoFAAwOW+2UHHRy6RRsYUoWAAAAGKpGjN64bVjqSicBgNr3xq9v3JKTIUXJAgAAAEPZji9PXvqB0ikAoLa95J+S5726dAoKULIAAADAUHfIF5OtdiydAgBq09a7JYd+pXQKClGyAAAAwFA3Ykzy99+ObcMA4DmqH54ccbptwoYwJQsAAACQ7PSq5MXvK50CAGrLwf8vmbZv6RQUpGQBAAAANjr0y8nEXUqnAIDasMMrkpd9rHQKClOyAAAAABuNGJO8/UdJQ2PpJABQ3UY2J289Lan3FvtQ578AAAAA4K+m7Zu89kulU8CQ8x9Xt6fu31rz8Qvbeq9bvLYnR5+3IVP/e03GfLU1L/r+2px7d+fT3s8pV7XnJaevzbhTWjP5v9bkLWevz33Luzc558SL2jLhP1uz3dfX5Oe3b3p/59zVmTf9Yn3/PTEYrN7wP8n47UqnoAooWQAAAIBNHfjhZNfXl04BQ8YNC7rz/Zs6ss+UTd+qO+a8DblveXd+f+To3HHc2Lxtj+F556835JZF3U9xT8mVj3Tl+JeMyLXvH5NLjh6dzp7k0J+tz7qOSpLkD/d15qw7OnPx0WPytUNG5p/+sCHL1/ckSVraKvl/l7fn1DeMHLgnC4PB3u9I9nlH6RRUCSULAAAA8ERv+W7StE3pFDDore2o5KjfbMjpbxqVrUbWbXJs5rzunPDSEXnpNg3Zeav6fPZVjRk/si43PU3JcuF7xuS9+43ICyY3ZN+pDTnjzSMzt6XSe5t7lvfkoB0b8uLpDTly7+FpaqzLnFUbC5jPXNKW4148PNs3e8sQnlLzdsnh/1M6BVXE35gAAADAE42ekLzt9KSuoXQSGNSO/2NbDn/+sByy87AnHHvZdg355V1dWbmhkp5KJWff2Zm2rkoO2vGJ5z6VlvaNXyeM2ljg7DulITcu7M6qDZXctLA7Gzor2WVCfa6e25WbF3fnoweM6JfnBYNSXX3y1u9vnMcCj3r2fyMDAAAAQ8uOL0/+7jPJFaeUTgKD0tl3dubmRd254QNjnvT4r94xOu/69fpM/NqaDKtPRg9PznvX6Owy4dl9brqnUsnHL2zLy7dryF6TNxamh+0yLO/ZZ3hecvrajBpelzPfMipjRiTHXdCWM948Kt+7sTPfvr4jW4+uyw/eODIvmKxohV4v/9jG343wOEoWAAAA4Km96tPJnKuSR64unQQGlXktPfnYhW255OjRGTms7knP+dzlbVndVsmlR4/O1qPr8tt7u/LOc9bnqn8ck72nPHP5cfwFbblzaXeuft+mJc4XDxqZLx7017kr/3ZFew7ZaViGNyRf+Ut77jhuTM6/vyvH/HZDbvrg2M17ojBY7PCK5NWfLZ2CKqRkAQAAAJ5afUNyxOnJ916ebFhZOg0MGjct6s7SdZW86Pvreq/rriR/eaQ737m+I/d9ZGy+c0Nn7jxuTO9qkn2nNuSquV059YaOnPbGUU97/x/544ac/0BX/vLeMdm26alXvty7vDs/u6Mzt3xoTH50S0detUNDJo2pzztfMDzv+31b1rRXMq7xyUsgGDLGTUve8eOkwdvpPJH/KgAAAICn1zQ9ecv3kl+8q3QSGDRes9Ow3HHcpitM/vF3G7L71g056eUjsr5z4zD6+r/pNxrqk57KU99vpVLJCX9qy3n3duWKY0dnp62eumCpVCr50Plt+d9DGzN2RF26e5LOno3HHvva/TSPBUNC/fDkHWckYyeXTkKVMvgeAAAAeGa7vS458J9Lp4BBY1xjXfaa3LDJZczwukwctfH63beuzy4T6vOh89ty/YLuzF7Zk/+Z2Z5LZnfnLbv/9XPTr/nJunzn+o7en4//Y1t+dntnznrbqIxrrMvitT1ZvLYnGzqf2Jb8382dmTS6Lm/abXiS5OXbD8vlc7py7fyufH1We/acVJ/xI61iYYg79CvJ9geWTkEVs5IFAAAAeHZe+6Vk4a3J3Jmlk8CgN7yhLn/8h1H5l8va86ZfrM/ajkp2mVCfM98yMm94/vDe82av7Mny9T29P3/vxs4kyUFnrt/k/n785pF5734jen9esrYn/35Ve2a+/6+raV66TUM+OaMxh5+1IZPH1OXMtzz9lmQw6O319uTAD5dOQZWrq1QqQ37RX2tra5qbm9PS0pKmpqbScTLq4I5nPglgM2y4fMQznzQEdXyusXQEYJAb8eX20hGSVN/rX6DGrF2W/OCgpHV+6SQAMHAm7ZF84LJkxJhnPpchzXZhAAAAwLM3dlLy7p8lw3zCHYBBqrEpedfPFCw8K0oWAAAA4LmZ/sLk779VOgUADIy3fDfZepfSKagRShYAAADgudvnncmMj5ROAQD96+UfS/Z4U+kU1BAlCwAAANA3r/1S8ryDS6cAgP6x4yuT13yhdApqjJIFAAAA6Jv6huTtP0q22ql0EgDYPOO3T95xxsbfbfAcKFkAAACAvhu1VXLkL5IRY0snAYC+aWxOjvp1Mmbr0kmoQUoWAAAAYPNM3iN562lJ6konAYDnpn548q6fJJN2K52EGqVkAQAAADbfHm9K/u4zpVMAwHPzxv9Ndj6odApqmJIFAAAA6B8HnZzs+ZbSKQDg2XnFJ5IXHVM6BTVOyQIAAAD0j7q65G0/SHZ4eekkAPD0XvDW5DVfKJ2CQUDJAgAAAPSfYY3Ju89KJu1ROgkAPLltX5K85bSNHw6AzaRkAQAAAPrXqPHJe85NmrYpnQQANjV+h+TIs5PhI0snYZBQsgAAAAD9r3mb5KhfJ43NpZMAwEYjmzf+bhqzdekkDCJKFgAAAGBgTNkzeffPk4bG0kkAGOrqhyfv/GkyadfSSRhklCwAAADAwNnplclbT0ti33sASqlL/v5byc5/VzoIg5CSBQAAABhYe70tOezfS6cAYKg69CvJfv9QOgWDlJIFAAAAGHgzjk8OPL50CgCGmld+KnnZR0qnYBBTsgAAAABbxmH/nrzgbaVTADBUvOSfktd8rnQKBjklCwAAALBl1NUlb/1+ssshpZMAMNjt/Y7kDf9dOgVDgJIFAAAA2HKGjUje9fNk54NKJwFgsNr1dclbTttY7sMAU7IAAAAAW9bwkcmRZyc7vrJ0EgAGm50PSt75k6RhWOkkDBFKFgAAAGDLGz4q+YdfJtvPKJ0EgMFi+5cl7/5FMqyxdBKGECULAAAAUMaIMclR5yTbvqR0EgBq3Tb7J0f9KhkxunQShhglCwAAAFBO47jkPecm019UOgkAtWrK3ht/lzSOK52EIUjJAgAAAJQ1sjk5+jfJ1H1KJwGg1kzZKznmt8morUonYYhSsgAAAADljdoqOeZ3G98sA4BnY/oLk2P/kIzZunQShjAlCwAAAFAdRk/YWLRM2qN0EgCq3XYHJsf8fuPvDihIyQIAAABUjzFbJ8f+Ptl619JJAKhWO75y4zaTI5tKJwElCwAAAFBlxk5O/vFPybR9SycBoNrs8trkqF8nI8aUTgJJlCwAAABANRqzdXLs+ckOryidBIBqsfsbk3eflQwfWToJ9FKyAAAAANVpZFPynnOTXV9fOgkApe319uQdZybDRpROAptQsgAAAADVa/jI5F0/S/Z5V+kkAJSy33uSt52eNAwrnQSeQMkCAAAAVLeGYclbv58c8OHSSQDY0l7yT8mbv5PUeyub6uS/TAAAAKD61dUlr//P5KCTSycBYEt52UeTw/9n4+8AqFLWVwEAAAC146B/SUZtlfzppCSV0mkAGAh19cnr/iM54EOlk8AzUrIAAAAAteWADyUjxye/++ekp6t0GgD60/DRyRH/l+x+eOkk8KwoWQAAAIDas++7kpFNyTnvTbraSqcBoD+MmZQc+ctk2/1LJ4FnrehMlr/85S9505velOnTp6euri6//e1vNzleqVTy+c9/PtOmTcuoUaNyyCGH5IEHHtjknJUrV+aoo45KU1NTxo8fn/e///1Zu3btFnwWAAAAQBG7vT459g/J6K1LJwFgc03cJXn/JQoWak7RkmXdunXZd999c+qppz7p8a997Wv51re+ldNOOy3XXXddxowZk8MOOyxtbX/9hMpRRx2Vu+66K5dccknOP//8/OUvf8kHP/jBLfUUAAAAgJK2e2nygcuSrXcrnQSAvtp+xsaCZcJOpZPAc1ZXqVSqYkpcXV1dzjvvvLzlLW9JsnEVy/Tp0/PJT34yn/rUp5IkLS0tmTJlSs4444y8+93vzj333JM999wzN9xwQ1784hcnSS688MK84Q1vyPz58zN9+vRn9ditra1pbm5OS0tLmpqaBuT5PRejDu4oHQEY5DZcPqJ0hKrU8bnG0hGAQW7El9tLR0hSfa9/AfrFhtXJr45O5vyldBIAnosXvDV56/eTYf5NTm0qupLl6cyZMyeLFy/OIYcc0ntdc3NzDjjggMyaNStJMmvWrIwfP763YEmSQw45JPX19bnuuuue8r7b29vT2tq6yQUAAACoYaPGJ+/5TfLC95ROAsCz9bKPJm//sYKFmla1JcvixYuTJFOmTNnk+ilTpvQeW7x4cSZPnrzJ8WHDhmXChAm95zyZU045Jc3Nzb2X7bbbrp/TAwAAAFtcw/Dkzacmh3wxqavatzwAqGtI3vDfyaFfTurqSqeBzTIkX3GcfPLJaWlp6b3MmzevdCQAAACgv7ziE8m7fp6MGFs6CQB/q7EpefdZyUs/UDoJ9IuqLVmmTp2aJFmyZMkm1y9ZsqT32NSpU7N06dJNjnd1dWXlypW95zyZxsbGNDU1bXIBAAAABpHd35C8/+KkefvSSQB4zNa7JR+4PNntdaWTQL+p2pJlp512ytSpU3PZZZf1Xtfa2prrrrsuM2bMSJLMmDEjq1evzk033dR7zuWXX56enp4ccMABWzwzAAAAUEWmvCD54J+T7WeUTgLAHm9KPnBZsvXzSyeBfjWs5IOvXbs2Dz74YO/Pc+bMya233poJEyZk++23z8c//vF85StfyfOf//zstNNO+dznPpfp06fnLW95S5Jkjz32yOte97p84AMfyGmnnZbOzs585CMfybvf/e5Mnz690LMCAAAAqsaYrZNjfp9ccGJyy09LpwEYeurqk4M/m7ziRPNXGJSKliw33nhjXv3qV/f+fOKJJyZJjj322Jxxxhn5zGc+k3Xr1uWDH/xgVq9enVe84hW58MILM3LkyN7b/PznP89HPvKRvOY1r0l9fX2OOOKIfOtb39rizwUAAACoUsNGJG/+TrLdAckfP510bSidCGBoGLVVcsT/JbscUjoJDJi6SqVSKR2itNbW1jQ3N6elpaUq5rOMOrijdARgkNtw+YjSEapSx+caS0cABrkRX24vHSFJ9b3+BdiiFt+R/OqYZOVDpZMADG5T9k7e/bNkqx1LJ4EBVbUzWQAAAAD63dS9kw9emezx96WTAAxee78jef/FChaGBCULAAAAMLSMbEre9dPksFOS+uGl0wAMHvXDNv7desT/JSNGl04DW4SSBQAAABiaZvxz8o9/TJq2KZ0EoPaNmZwc/duNf7fCEKJkAQAAAIau7V6afOiq5HkHl04CULt2eW1y3DXJTq8snQS2OCULAAAAMLSNmZgcdW7yd/+S1HmrBOBZa2jcuD3YUeckYyeXTgNFeOUAAAAAUF+fvPrk5D3nJqO3Lp0GoPptvVvygcs2bg9WV/f/27v/KCvrAn/g7zsDDL/mB78cAX8wKpLkD364KIRKpmalq1bq19SA1FSSEiJXPd/V0nbHNnF1Wzt+o2OGu3zZtJOn/Rqy6YYhEZhQa5auYH7H+opoJihjoMx8/7g1SuKvq/DMDK/XOc+59/k8P+773nPmmTn3Pc/zFJ0GCqNkAQAAAPizfY9OZvw0GfXhopMAdF7jpyfn35vsflDRSaBwShYAAACAV+s/JDnjfyd//bWkV23RaQA6jz4Dk9P/NTnx+qRnn6LTQKegZAEAAADYnnGfTC68L9lrYtFJAIo34ojyze0POKHoJNCpKFkAAAAAXs+AEcm0HyTHfCmp7lV0GoCdr6pn8oErk09+P6kbVnQa6HSULAAAAABvpKoqmXxxct6PksYDi04DsPMMHpV8anFyxOzysRB4DT8ZAAAAAG/F7geWi5b3fS4p+UoF6MaqeiRHzEkuWJrsMb7oNNCp+YsAAAAA4K3q0Ss59qpk2p1Jw95FpwF49w09JPn0kuQDf5v0qCk6DXR6ShYAAACAt2vvSeUbQB96TpJS0WkA3rkevZNjvlg+Y2/3g4pOA12GkgUAAACgEjW1yQnXJef80L1agK5tr0nJBcuSybOSquqi00CXomQBAAAAeCf2/Kvk0/cmx3wp6dm36DQAb12v2uTD1ybTf5AM3q/oNNAlKVkAAAAA3qnqHsnki5MZP01GHld0GoA3t98xyYzlyYTzkpLLHkKllCwAAAAA75YBeydn3pacekvSf/ei0wC8Vt9Byck3JWd9N2nYs+g00OUpWQAAAADebe89Jbno/uSvzktKvn4BOoGqHsmE85OZq5IxZxSdBroNv+UBAAAAdoTedclHrk3OuTvZ/aCi0wC7sqYjk/OXJh/+h6RPQ9FpoFtRsgAAAADsSHuMTz59b/LB5qR3fdFpgF1J/V7JafOTqf+eNI4uOg10S0oWAAAAgB2tqjqZOCP57M+Twy5IqnoWnQjoznr0SaZclly0Mhl9UtFpoFtTsgAAAADsLH0HJh/6SjLjp8mojxSdBuiORp9cvifUlEuTnn2KTgPdnpIFAAAAYGcbvF9yxoJk2p3J0EOKTgN0B7u9N5n6f5LTvp007Fl0GthlKFkAAAAAijJicvl+LSfflNQNLzoN0BX1b0w+Mje5YGnSdETRaWCX06PoAAAAAAC7tFIpGXNG8t6Tk598LVl2Q7LlhaJTAZ1dnwHJ+z6XTDg/6dW36DSwy1KyAAAAAHQGPfskR12SjJua/OjLyep/Sdrbik4FdDa9+ieHX5hMmpn0ri86DezyXC4MAAAAoDOpbUz++mvJZ1YmB52alHx9AySprkkOn5F87hfJ0f9TwQKdhN/SAAAAAJ3R4JHJx775p7LltKRUXXQioAhVPZJxn0w+uyo5vjnpN7joRMCrKFkAAAAAOrPBI5OPzUs+s0LZAruUUnLgx8pF619/Lanfo+hAwHYoWQAAAAC6AmUL7CJKyXtOSC5Ymnz85mTQvkUHAt6AkgUAAACgK+koW1YmB5+ubIHuorpXMvas8s/2//jXZPeDik4EvAU9ig4AAAAAQAUG75d89BvJkZckP/6H5MHbk/atRacC3q5etcmh05LDP5PUDS06DfA2KVkAAAAAurI/ly1H/89kxf9KVt2abN5QdCrgzfTbLTn8guTQc5I+DUWnASqkZAEAAADoDhr2Sj74d8mUS5PV/5KsuCn5w+NFpwL+0sB9kkkzk0M+kfTsXXQa4B1SsgAAAAB0JzW1yeEXJhPOTx65M1n+9aTlJ0WnAoaOSSZfnBxwUlLlVtnQXShZAAAAALqjqqrkgBPL0/9bXS5bHvpe0vZS0clg11HVMznghPIlwZqOKDoNsAMoWQAAAAC6u2Fjk4/NS479UrLyG8nPvpX88bmiU0H3Vb9XMn5qMu6TSf/dik4D7EBKFgAAAIBdRd2w5JgvJkdekjx4W7L61uS39xedCrqHUlWy37HJX51TfnRJMNglKFkAAAAAdjW9+pb/y3781GT9w+Wy5RcLk9Znik4GXU+/3ZJxZyfjpyUNexWdBtjJlCwAAAAAu7Ld3pN88O/KZ7g88oNk1a3J2nuS9raik0HnNuKI5NBPle97VN2z6DRAQZQsAAAAAJS/JB59Unna8Lvk5wvKZ7g893+LTgadx4ARyUGnJgefngweWXQaoBNQsgAAAACwrfrhyVFfSI6ck/zmx+Wy5df/nrz8x6KTwc7Xd3Dy3lOSg09L9pxQdBqgk1GyAAAAALB9pVKyz1Hl6Y8bkod/kPzqjmTtfyZbtxSdDnacnv2S93w4Oei0ZN+jk2pfowLb5+gAAAAAwJvrXZ+MOaM8KVzojqp6lAuVg04rFyy9+hWdCOgClCwAAAAAvD0KF7qLUnWy18TkvSeXLwnWb3DRiYAuRskCAAAAQOUULnQ1NfXJfh9IRn0oGXls0mdA0YmALkzJAgAAAMC74y8Ll0d/mKy5O1lzT7JpfdHp2JU17F0uVUZ9KNn7fUl1z6ITAd2EkgUAAACAd1/v+uSgj5en9vbkyV+8Urj8dmXS9nLRCenOSlXJ8EOTUccnoz6c7HZA0YmAbkrJAgAAAMCOVSolw8aUpyPnlM9yeWzJK6XLxt8VHJBuof/uyYjJyb7vT0Z+MOk/pOhEwC5AyQIAAADAztW7Phl9UnlKkvW/fuXSYk+sTF5+sdh8dA39G8uX/mo6IhlxRDJ4ZNGJgF2QkgUAAACAYu12QHl632eTrS+VLy3W8tOkZXnyxIpk09NFJ6Qz6Ddk21JlyKiiEwEoWQAAAADoRKp7JnscWp4mXVQe+/3acunyxE/Lj888mqS90JjsBHV7JHuMLxcqIya7rwrQKSlZAAAAAOjcBu1bnsaeWZ5vfbZ8hkvL8qRlRbLuweSlTcVm5J2pHZoMG/vKNHSMe6oAXYKSBQAAAICupe/AZNSHylOStLUlf/hNuWx56pfJul+WHzc8UWxOtq9/Y7lEeXWpUttYdCqAiihZAAAAAOjaqqpeOdvlvSe/Mv7ic8lTD/2pePlTAbP+4eTlF4tKumvpXZ8MGlm+If3gkcmQA5JhY5K6YUUnA3jXKFkAAAAA6J76NCQj3lee/qxta/keL79/NHn2N8kfHv/T9JvkuZZk65aCwnZRpepkwIhyiTJovz89jkwG7+9yX8AuQckCAAAAwK6jqjoZsn95+kttbcnG321bvPzh8VfKmBef3blZO4Mevcv3S6kdmtT9+XFY0rB3uVAZ0JT06FV0SoDCKFkAAAAAIClfdqxhz/LUdMRrl7/0YrLp6eSFp8uPHdMzyab1r3r+dNL6+6Tt5Z3/Ht6KUlX5Ul6965PeDUnt7q+UJ39ZqPQdWHRagE5NyQIAAAAAb0XPPknDXuXpzbS3Jy/+oVy2bNlULmheav3T45+ev/zHV429etmLSXtb+aybUtUbT69ep7pn0qv/n6Z+SU3/V+Z7171SqtTUJqXSDv+4AHYFShYAAAAAeLeVSuWzQJwJAtCtVRUdAAAAAAAAoCtSsgAAAAAAAFRAyQIAAAAAAFABJQsAAAAAAEAFlCwAAAAAAAAVULIAAAAAAABUQMkCAAAAAABQASULAAAAAABABZQsAAAAAAAAFVCyAAAAAAAAVEDJAgAAAAAAUAElCwAAAAAAQAWULAAAAAAAABVQsgAAAAAAAFRAyQIAAAAAAFABJQsAAAAAAEAFlCwAAAAAAAAVULIAAAAAAABUQMkCAAAAAABQASULAAAAAABABZQsAAAAAMA7Mm3atJx88slFxwDY6ZQsAAAAAAAAFVCyAAAAAAAAVEDJAgAAAAC7kClTpmTmzJm5+OKLM2DAgDQ2NmbevHnZtGlTpk+fntra2uy3335ZtGhRkmTr1q0555xz0tTUlD59+mTUqFG54YYb3vA12tra0tzc3LHNIYcckttvv31nvD2AnUrJAgAAAAC7mG9/+9sZPHhwVq5cmZkzZ+bCCy/MqaeemkmTJmXVqlU57rjjcvbZZ6e1tTVtbW3ZY489ctttt+VXv/pVrrjiilx++eX5zne+87r7b25uzvz583PTTTfloYceyqxZs3LWWWfl3nvv3YnvEmDHK7W3t7cXHaJoGzduTH19fTZs2JC6urqi46TP0VuKjgB0cy/+Z6+iI3RKW/62pugIQDfX6+rNRUdI0vn+/gUAdq4pU6Zk69atWbp0aZLymSr19fX56Ec/mvnz5ydJ1q1bl6FDh2b58uU5/PDDX7OPiy66KOvWres4O2XatGl57rnncscdd2Tz5s0ZOHBg7r777kycOLFjm3PPPTetra1ZsGDBTniXADtHj6IDAAAAAAA718EHH9zxvLq6OoMGDcpBBx3UMdbY2JgkWb9+fZLkxhtvzM0335yWlpa8+OKL2bJlS8aMGbPdfa9Zsyatra059thjtxnfsmVLxo4d+y6/E4BiKVkAAAAAYBfTs2fPbeZLpdI2Y6VSKUn53ioLFy7MnDlzMnfu3EycODG1tbX56le/mhUrVmx33y+88EKS5M4778zw4cO3WVZT4woCQPeiZAEAAAAAXteyZcsyadKkzJgxo2Ns7dq1r7v+6NGjU1NTk5aWlhx11FE7IyJAYZQsAAAAAMDrGjlyZObPn5/Fixenqakpt956a+6///40NTVtd/3a2trMmTMns2bNSltbWyZPnpwNGzZk2bJlqaury9SpU3fyOwDYcZQsAAAAAMDrOv/887N69eqcfvrpKZVKOeOMMzJjxowsWrTodbe5+uqrM2TIkDQ3N+exxx5LQ0NDxo0bl8svv3wnJgfY8Urt7e3tRYco2saNG1NfX58NGzakrq6u6Djpc/SWoiMA3dyL/9mr6Aid0pa/dW1gYMfqdfXmoiMk6Xx//wIAAHRVVUUHAAAAAAAA6IqULAAAAAAAABVQsgAAAAAAAFRAyQIAAAAAAFABJQsAAAAAAEAFlCwAAAAAAAAVULIAAAAAAABUQMkCAAAAAABQASULAAAAAABABZQsAAAAAAAAFVCyAAAAAAAAVEDJAgAAAAAAUAElCwAAAAAAQAWULAAAAAAAABVQsgAAAAAAAFRAyQIAAAAAAFABJQsAAAAAAEAFlCwAAAAAAAAVULIAAAAAAABUQMkCAAAAAABQASULAAAAAABABZQsAAAAAAAAFVCyAAAAAAAAVEDJAgAAAAAAUAElCwAAAAAAQAWULAAAAAAAABVQsgAAAAAAAFRAyQIAAAAAAFABJQsAAAAAAEAFlCwAAAAAAAAVULIAAAAAAABUQMkCAAAAAABQASULAAAAAABABZQsAAAAAAAAFVCyAAAAAAAAVEDJAgAAAAAAUAElCwAAAAAAQAWULAAAAAAAABXoNiXLjTfemBEjRqR379457LDDsnLlyqIjAQAAAAAA3Vi3KFn+7d/+LbNnz86VV16ZVatW5ZBDDskHP/jBrF+/vuhoAAAAAABAN9UtSpbrrrsu5513XqZPn57Ro0fnpptuSt++fXPzzTcXHQ0AAAAAAOimehQd4J3asmVLHnjggVx22WUdY1VVVTnmmGOyfPny7W6zefPmbN68uWN+w4YNSZKNGzfu2LBvUfvLW4qOAHRzGzf2KjpCp7Rlc3vREYBurlcn+Xvzz3/3trc77gEAALwTXb5keeaZZ7J169Y0NjZuM97Y2JiHH354u9s0NzfnS1/60mvG99xzzx2SEaCzqa8vOgHALuqrnesA/Pzzz6feLwUAAICKdfmSpRKXXXZZZs+e3THf1taWZ599NoMGDUqpVCowGbx9GzduzJ577pknnngidXV1RccB2GU4/tKVtbe35/nnn8+wYcOKjgIAANCldfmSZfDgwamurs5TTz21zfhTTz2V3Xfffbvb1NTUpKamZpuxhoaGHRURdoq6ujpf8gEUwPGXrsoZLAAAAO9cl7/xfa9evTJ+/Pjcc889HWNtbW255557MnHixAKTAQAAAAAA3VmXP5MlSWbPnp2pU6fm0EMPzYQJE3L99ddn06ZNmT59etHRAAAAAACAbqpblCynn356nn766VxxxRVZt25dxowZk7vuuiuNjY1FR4MdrqamJldeeeVrLoEHwI7l+AsAAACU2tvb24sOAQAAAAAA0NV0+XuyAAAAAAAAFEHJAgAAAAAAUAElCwAAAAAAQAWULLCTtLe359Of/nQGDhyYUqmUn//854XkePzxxwt9fYDubtq0aTn55JOLjgEAAADsBD2KDgC7irvuuiu33HJLlixZkn322SeDBw8uOhIAAAAAAO+AkgV2krVr12bo0KGZNGlS0VEAAAAAAHgXuFwY7ATTpk3LzJkz09LSklKplBEjRqStrS3Nzc1pampKnz59csghh+T222/v2GbJkiUplUpZvHhxxo4dmz59+uToo4/O+vXrs2jRohxwwAGpq6vLJz7xibS2tnZsd9ddd2Xy5MlpaGjIoEGDcsIJJ2Tt2rVvmO+Xv/xlPvShD6V///5pbGzM2WefnWeeeWaHfR4AncWUKVMyc+bMXHzxxRkwYEAaGxszb968bNq0KdOnT09tbW3222+/LFq0KEmydevWnHPOOR3H7lGjRuWGG254w9d4s+M9AAAA0HUpWWAnuOGGG3LVVVdljz32yJNPPpn7778/zc3NmT9/fm666aY89NBDmTVrVs4666zce++922z7xS9+Mf/8z/+cn/zkJ3niiSdy2mmn5frrr8+CBQty55135j/+4z/yta99rWP9TZs2Zfbs2fnZz36We+65J1VVVTnllFPS1ta23WzPPfdcjj766IwdOzY/+9nPctddd+Wpp57KaaedtkM/E4DO4tvf/nYGDx6clStXZubMmbnwwgtz6qmnZtKkSVm1alWOO+64nH322WltbU1bW1v22GOP3HbbbfnVr36VK664Ipdffnm+853vvO7+3+rxHgAAAOh6Su3t7e1Fh4BdwfXXX5/rr78+jz/+eDZv3pyBAwfm7rvvzsSJEzvWOffcc9Pa2poFCxZkyZIlef/735+77747H/jAB5Ik11xzTS677LKsXbs2++yzT5LkggsuyOOPP5677rpru6/7zDPPZMiQIXnwwQdz4IEH5vHHH09TU1NWr16dMWPG5Mtf/nKWLl2axYsXd2zz29/+NnvuuWceeeSR7L///jvwUwEo1pQpU7J169YsXbo0SflMlfr6+nz0ox/N/PnzkyTr1q3L0KFDs3z58hx++OGv2cdFF12UdevWdZydMm3atDz33HO544473tLxHgAAAOi63JMFCrBmzZq0trbm2GOP3WZ8y5YtGTt27DZjBx98cMfzxsbG9O3bt6Ng+fPYypUrO+YfffTRXHHFFVmxYkWeeeaZjjNYWlpacuCBB74myy9+8Yv86Ec/Sv/+/V+zbO3atUoWoNt79XG2uro6gwYNykEHHdQx1tjYmCRZv359kuTGG2/MzTffnJaWlrz44ovZsmVLxowZs919v53jPQAAAND1KFmgAC+88EKS5M4778zw4cO3WVZTU7PNfM+ePTuel0qlbeb/PPbqS4GdeOKJ2XvvvTNv3rwMGzYsbW1tOfDAA7Nly5bXzXLiiSfmK1/5ymuWDR069O29MYAuaHvH1b889ible6ssXLgwc+bMydy5czNx4sTU1tbmq1/9alasWLHdfb+d4z0AAADQ9ShZoACjR49OTU1NWlpactRRR71r+/3973+fRx55JPPmzcsRRxyRJLnvvvvecJtx48blu9/9bkaMGJEePRwSAN7IsmXLMmnSpMyYMaNjbO3ata+7/o463gMAAACdg29UoQC1tbWZM2dOZs2alba2tkyePDkbNmzIsmXLUldXl6lTp1a03wEDBmTQoEH5xje+kaFDh6alpSWXXnrpG27zmc98JvPmzcsZZ5yRSy65JAMHDsyaNWuycOHCfPOb30x1dXVFWQC6o5EjR2b+/PlZvHhxmpqacuutt+b+++9PU1PTdtffUcd7AAAAoHNQskBBrr766gwZMiTNzc157LHH0tDQkHHjxuXyyy+veJ9VVVVZuHBhPvvZz+bAAw/MqFGj8k//9E+ZMmXK624zbNiwLFu2LH/zN3+T4447Lps3b87ee++d448/PlVVVRVnAeiOzj///KxevTqnn356SqVSzjjjjMyYMSOLFi163W12xPEeAAAA6BxK7e3t7UWHAAAAAAAA6Gr8mzoAAAAAAEAFlCwAAAAAAAAVULIAAAAAAABUQMkCAAAAAABQASULAAAAAABABZQsAAAAAAAAFVCyAAAAAAAAVEDJAkCnNW3atJx88slFxwAAAACA7VKyAAAAAAAAVEDJAkC31d7enpdffrnoGAAAAAB0U0oWAN7U888/nzPPPDP9+vXL0KFD84//+I+ZMmVKLr744iTJ5s2bM2fOnAwfPjz9+vXLYYcdliVLlnRsf8stt6ShoSGLFy/OAQcckP79++f444/Pk08+2bHO1q1bM3v27DQ0NGTQoEG55JJL0t7evk2Otra2NDc3p6mpKX369MkhhxyS22+/vWP5kiVLUiqVsmjRoowfPz41NTW57777duhnAwAAAMCuS8kCwJuaPXt2li1blu9///v54Q9/mKVLl2bVqlUdyy+66KIsX748CxcuzH/913/l1FNPzfHHH59HH320Y53W1tZce+21ufXWW/PjH/84LS0tmTNnTsfyuXPn5pZbbsnNN9+c++67L88++2y+973vbZOjubk58+fPz0033ZSHHnoos2bNyllnnZV77713m/UuvfTSXHPNNfn1r3+dgw8+eAd9KgAAAADs6krtf/lvwgDwKs8//3wGDRqUBQsW5OMf/3iSZMOGDRk2bFjOO++8zJ49O/vss09aWloybNiwju2OOeaYTJgwIX//93+fW265JdOnT8+aNWuy7777Jkm+/vWv56qrrsq6deuSJMOGDcusWbPyhS98IUny8ssvp6mpKePHj88dd9yRzZs3Z+DAgbn77rszceLEjtc599xz09ramgULFmTJkiV5//vfnzvuuCMnnXTSzvqIAAAAANhF9Sg6AACd22OPPZaXXnopEyZM6Birr6/PqFGjkiQPPvhgtm7dmv3333+b7TZv3pxBgwZ1zPft27ejYEmSoUOHZv369UnKpc2TTz6Zww47rGN5jx49cuihh3ZcMmzNmjVpbW3Nscceu83rbNmyJWPHjt1m7NBDD30nbxkAAAAA3hIlCwDvyAsvvJDq6uo88MADqa6u3mZZ//79O5737Nlzm2WlUuk191x5s9dJkjvvvDPDhw/fZllNTc028/369XvL+wUAAACASilZAHhD++yzT3r27Jn7778/e+21V5LymSf//d//nSOPPDJjx47N1q1bs379+hxxxBEVvUZ9fX2GDh2aFStW5Mgjj0xSvlzYAw88kHHjxiVJRo8enZqamrS0tOSoo456d94cAAAAALwDShYA3lBtbW2mTp2aL3zhCxk4cGB22223XHnllamqqkqpVMr++++fM888M5/85Cczd+7cjB07Nk8//XTuueeeHHzwwfnIRz7yll7nc5/7XK655pqMHDky73nPe3Ldddflueee2ybHnDlzMmvWrLS1tWXy5MnZsGFDli1blrq6ukydOnUHfQIAAAAAsH1KFgDe1HXXXZcLLrggJ5xwQurq6nLJJZfkiSeeSO/evZMk3/rWt/LlL385n//85/O73/0ugwcPzuGHH54TTjjhLb/G5z//+Tz55JOZOnVqqqqq8qlPfSqnnHJKNmzY0LHO1VdfnSFDhqS5uTmPPfZYGhoaMm7cuFx++eXv+nsGAAAAgDdTan87F8QHgCSbNm3K8OHDM3fu3JxzzjlFxwEAAACAQjiTBYA3tXr16jz88MOZMGFCNmzYkKuuuipJctJJJxWcDAAAAACKo2QB4C259tpr88gjj6RXr14ZP358li5dmsGDBxcdCwAAAAAK43JhAAAAAAAAFagqOgAAAAAAAEBXpGQBAAAAAACogJIFAAAAAACgAkoWAAAAAACACihZAAAAAAAAKqBkAQAAAAAAqICSBQAAAAAAoAJKFgAAAAAAgAooWQAAAAAAACrw/wGBLBe84J55MAAAAABJRU5ErkJggg==",
1353
  "text/plain": [
1354
  "<Figure size 2000x1000 with 2 Axes>"
1355
  ]
 
1364
  "for container in ax[0].containers:\n",
1365
  " ax[0].bar_label(container,color='black',size=0.2)\n",
1366
  "\n",
1367
+ "plt.pie(x=df.gender.value_counts(),labels=df.gender.value_counts().index, \\\n",
1368
+ " explode=[0,0.1],autopct='%1.1f%%' )\n",
1369
+ "plt.show()"
1370
  ]
1371
  },
1372
  {
1373
+ "cell_type": "markdown",
1374
+ "metadata": {},
1375
+ "source": [
1376
+ "### Observation\n",
1377
+ "- Gender has balanced data."
1378
+ ]
1379
+ },
1380
+ {
1381
+ "cell_type": "markdown",
1382
  "metadata": {},
 
1383
  "source": []
1384
  }
1385
  ],
notebook/MODEL_TRAINING.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
notebook/catboost_info/catboost_training.json ADDED
@@ -0,0 +1,1004 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"RMSE"}],"launch_mode":"Train","parameters":"","iteration_count":1000,"learn_sets":["learn"],"name":"experiment"},
3
+ "iterations":[
4
+ {"learn":[15.1265543],"iteration":0,"passed_time":0.0005210452513,"remaining_time":0.5205242061},
5
+ {"learn":[14.76531882],"iteration":1,"passed_time":0.0008293977145,"remaining_time":0.4138694595},
6
+ {"learn":[14.3879254],"iteration":2,"passed_time":0.001218244295,"remaining_time":0.4048631872},
7
+ {"learn":[14.01588715],"iteration":3,"passed_time":0.001536679354,"remaining_time":0.3826331592},
8
+ {"learn":[13.73314153],"iteration":4,"passed_time":0.001818242109,"remaining_time":0.3618301796},
9
+ {"learn":[13.45632399],"iteration":5,"passed_time":0.002126052945,"remaining_time":0.3522161045},
10
+ {"learn":[13.15514533],"iteration":6,"passed_time":0.002483818463,"remaining_time":0.3523473906},
11
+ {"learn":[12.86146543],"iteration":7,"passed_time":0.002792795881,"remaining_time":0.3463066892},
12
+ {"learn":[12.59672108],"iteration":8,"passed_time":0.00310868946,"remaining_time":0.3423012505},
13
+ {"learn":[12.29909788],"iteration":9,"passed_time":0.003367878849,"remaining_time":0.3334200061},
14
+ {"learn":[12.01075573],"iteration":10,"passed_time":0.003651566449,"remaining_time":0.3283090198},
15
+ {"learn":[11.76734151],"iteration":11,"passed_time":0.003856343149,"remaining_time":0.3175055859},
16
+ {"learn":[11.53860334],"iteration":12,"passed_time":0.00411532422,"remaining_time":0.3124480773},
17
+ {"learn":[11.28032808],"iteration":13,"passed_time":0.004450966356,"remaining_time":0.3134752019},
18
+ {"learn":[11.04717079],"iteration":14,"passed_time":0.004764026808,"remaining_time":0.3128377604},
19
+ {"learn":[10.80674421],"iteration":15,"passed_time":0.005060255157,"remaining_time":0.3112056922},
20
+ {"learn":[10.57398569],"iteration":16,"passed_time":0.005334735096,"remaining_time":0.3084732117},
21
+ {"learn":[10.37210883],"iteration":17,"passed_time":0.005623005694,"remaining_time":0.3067661995},
22
+ {"learn":[10.18093548],"iteration":18,"passed_time":0.005871237551,"remaining_time":0.3031412651},
23
+ {"learn":[9.991004731],"iteration":19,"passed_time":0.00612259418,"remaining_time":0.3000071148},
24
+ {"learn":[9.796980163],"iteration":20,"passed_time":0.006334203714,"remaining_time":0.2952945446},
25
+ {"learn":[9.601210494],"iteration":21,"passed_time":0.00660635049,"remaining_time":0.2936823081},
26
+ {"learn":[9.427545622],"iteration":22,"passed_time":0.006958366429,"remaining_time":0.2955793044},
27
+ {"learn":[9.258143104],"iteration":23,"passed_time":0.007253219878,"remaining_time":0.2949642751},
28
+ {"learn":[9.093042489],"iteration":24,"passed_time":0.007511076032,"remaining_time":0.2929319653},
29
+ {"learn":[8.941806339],"iteration":25,"passed_time":0.007814512188,"remaining_time":0.2927436489},
30
+ {"learn":[8.795319972],"iteration":26,"passed_time":0.008161695147,"remaining_time":0.2941233103},
31
+ {"learn":[8.660725435],"iteration":27,"passed_time":0.008471464173,"remaining_time":0.2940808277},
32
+ {"learn":[8.524201883],"iteration":28,"passed_time":0.008762192924,"remaining_time":0.2933823907},
33
+ {"learn":[8.403377905],"iteration":29,"passed_time":0.009052338385,"remaining_time":0.2926922744},
34
+ {"learn":[8.278937492],"iteration":30,"passed_time":0.009321693698,"remaining_time":0.291378103},
35
+ {"learn":[8.162401232],"iteration":31,"passed_time":0.009720372893,"remaining_time":0.29404128},
36
+ {"learn":[8.059254597],"iteration":32,"passed_time":0.01008551287,"remaining_time":0.2955360893},
37
+ {"learn":[7.958828934],"iteration":33,"passed_time":0.01037424177,"remaining_time":0.2947505162},
38
+ {"learn":[7.870864998],"iteration":34,"passed_time":0.01073009076,"remaining_time":0.295843931},
39
+ {"learn":[7.766741368],"iteration":35,"passed_time":0.01102852728,"remaining_time":0.2953194528},
40
+ {"learn":[7.669930305],"iteration":36,"passed_time":0.01121368042,"remaining_time":0.2918587633},
41
+ {"learn":[7.577312743],"iteration":37,"passed_time":0.0114925767,"remaining_time":0.2909436522},
42
+ {"learn":[7.478019538],"iteration":38,"passed_time":0.01175305766,"remaining_time":0.2896073952},
43
+ {"learn":[7.379904448],"iteration":39,"passed_time":0.01204507799,"remaining_time":0.2890818717},
44
+ {"learn":[7.288172815],"iteration":40,"passed_time":0.01232651575,"remaining_time":0.2883202098},
45
+ {"learn":[7.208116897],"iteration":41,"passed_time":0.01260907843,"remaining_time":0.2876070747},
46
+ {"learn":[7.130375614],"iteration":42,"passed_time":0.01288468329,"remaining_time":0.2867591141},
47
+ {"learn":[7.058473883],"iteration":43,"passed_time":0.01315803831,"remaining_time":0.2858882869},
48
+ {"learn":[6.983673516],"iteration":44,"passed_time":0.01345351671,"remaining_time":0.2855135213},
49
+ {"learn":[6.917628677],"iteration":45,"passed_time":0.01379732492,"remaining_time":0.2861445211},
50
+ {"learn":[6.846655393],"iteration":46,"passed_time":0.01409884455,"remaining_time":0.2858765713},
51
+ {"learn":[6.778684223],"iteration":47,"passed_time":0.01436919979,"remaining_time":0.2849891291},
52
+ {"learn":[6.721658136],"iteration":48,"passed_time":0.01464509629,"remaining_time":0.2842344198},
53
+ {"learn":[6.668189895],"iteration":49,"passed_time":0.01492965882,"remaining_time":0.2836635177},
54
+ {"learn":[6.608743329],"iteration":50,"passed_time":0.01519393118,"remaining_time":0.282726288},
55
+ {"learn":[6.554654005],"iteration":51,"passed_time":0.01547616055,"remaining_time":0.2821423115},
56
+ {"learn":[6.504736955],"iteration":52,"passed_time":0.01578622122,"remaining_time":0.2820670094},
57
+ {"learn":[6.45571475],"iteration":53,"passed_time":0.01613144599,"remaining_time":0.2825990353},
58
+ {"learn":[6.40230382],"iteration":54,"passed_time":0.016418675,"remaining_time":0.2821026886},
59
+ {"learn":[6.353725587],"iteration":55,"passed_time":0.01673806832,"remaining_time":0.2821560088},
60
+ {"learn":[6.309792734],"iteration":56,"passed_time":0.01711883216,"remaining_time":0.2832115566},
61
+ {"learn":[6.272292275],"iteration":57,"passed_time":0.01742735127,"remaining_time":0.2830442224},
62
+ {"learn":[6.234786704],"iteration":58,"passed_time":0.01771828834,"remaining_time":0.2825916836},
63
+ {"learn":[6.197468532],"iteration":59,"passed_time":0.01800239258,"remaining_time":0.2820374837},
64
+ {"learn":[6.156716152],"iteration":60,"passed_time":0.01825870718,"remaining_time":0.2810643613},
65
+ {"learn":[6.124195753],"iteration":61,"passed_time":0.01850848059,"remaining_time":0.2800153999},
66
+ {"learn":[6.090073428],"iteration":62,"passed_time":0.01874854638,"remaining_time":0.2788474279},
67
+ {"learn":[6.057363739],"iteration":63,"passed_time":0.01903373387,"remaining_time":0.2783683578},
68
+ {"learn":[6.028431233],"iteration":64,"passed_time":0.01928321563,"remaining_time":0.2773816403},
69
+ {"learn":[5.993623132],"iteration":65,"passed_time":0.01954548813,"remaining_time":0.2765982714},
70
+ {"learn":[5.956903466],"iteration":66,"passed_time":0.01979930291,"remaining_time":0.2757126809},
71
+ {"learn":[5.927808694],"iteration":67,"passed_time":0.02005840898,"remaining_time":0.2749181936},
72
+ {"learn":[5.90957325],"iteration":68,"passed_time":0.02014806909,"remaining_time":0.2718529322},
73
+ {"learn":[5.878120336],"iteration":69,"passed_time":0.02038517676,"remaining_time":0.2708316341},
74
+ {"learn":[5.85626574],"iteration":70,"passed_time":0.02050212655,"remaining_time":0.2682602192},
75
+ {"learn":[5.82879226],"iteration":71,"passed_time":0.02077973126,"remaining_time":0.2678276473},
76
+ {"learn":[5.802517291],"iteration":72,"passed_time":0.02105275297,"remaining_time":0.2673411233},
77
+ {"learn":[5.774188846],"iteration":73,"passed_time":0.02130627611,"remaining_time":0.266616374},
78
+ {"learn":[5.751751831],"iteration":74,"passed_time":0.02165454232,"remaining_time":0.2670726886},
79
+ {"learn":[5.72935383],"iteration":75,"passed_time":0.0219557703,"remaining_time":0.2669359442},
80
+ {"learn":[5.702009265],"iteration":76,"passed_time":0.02222283412,"remaining_time":0.2663854012},
81
+ {"learn":[5.683379635],"iteration":77,"passed_time":0.02253251982,"remaining_time":0.2663459394},
82
+ {"learn":[5.662958386],"iteration":78,"passed_time":0.02287432817,"remaining_time":0.2666741296},
83
+ {"learn":[5.644471812],"iteration":79,"passed_time":0.02314155864,"remaining_time":0.2661279243},
84
+ {"learn":[5.623254548],"iteration":80,"passed_time":0.02340320618,"remaining_time":0.2655252652},
85
+ {"learn":[5.606485251],"iteration":81,"passed_time":0.02365418784,"remaining_time":0.2648115175},
86
+ {"learn":[5.590400599],"iteration":82,"passed_time":0.02398795511,"remaining_time":0.2650235522},
87
+ {"learn":[5.572784113],"iteration":83,"passed_time":0.02436692741,"remaining_time":0.2657155417},
88
+ {"learn":[5.557455625],"iteration":84,"passed_time":0.02464599035,"remaining_time":0.2653068373},
89
+ {"learn":[5.538956881],"iteration":85,"passed_time":0.02488305635,"remaining_time":0.2644548082},
90
+ {"learn":[5.522414125],"iteration":86,"passed_time":0.02518549258,"remaining_time":0.2643029279},
91
+ {"learn":[5.510469967],"iteration":87,"passed_time":0.02532360749,"remaining_time":0.2624446594},
92
+ {"learn":[5.494820199],"iteration":88,"passed_time":0.02558500505,"remaining_time":0.2618869618},
93
+ {"learn":[5.480436107],"iteration":89,"passed_time":0.0258488191,"remaining_time":0.261360282},
94
+ {"learn":[5.466480778],"iteration":90,"passed_time":0.02611467467,"remaining_time":0.2608597723},
95
+ {"learn":[5.448749805],"iteration":91,"passed_time":0.02635803188,"remaining_time":0.2601423147},
96
+ {"learn":[5.438044333],"iteration":92,"passed_time":0.02660526381,"remaining_time":0.2594728417},
97
+ {"learn":[5.425701943],"iteration":93,"passed_time":0.02684324642,"remaining_time":0.2587232049},
98
+ {"learn":[5.410226035],"iteration":94,"passed_time":0.02713143369,"remaining_time":0.2584626052},
99
+ {"learn":[5.396830474],"iteration":95,"passed_time":0.02738699835,"remaining_time":0.2578942344},
100
+ {"learn":[5.386154832],"iteration":96,"passed_time":0.02763148048,"remaining_time":0.257229143},
101
+ {"learn":[5.37389183],"iteration":97,"passed_time":0.02790508548,"remaining_time":0.2568406847},
102
+ {"learn":[5.364441134],"iteration":98,"passed_time":0.028185315,"remaining_time":0.2565148365},
103
+ {"learn":[5.353754152],"iteration":99,"passed_time":0.0284561702,"remaining_time":0.2561055318},
104
+ {"learn":[5.341537434],"iteration":100,"passed_time":0.02871698447,"remaining_time":0.2556095945},
105
+ {"learn":[5.331299655],"iteration":101,"passed_time":0.02896542465,"remaining_time":0.2550093268},
106
+ {"learn":[5.320175338],"iteration":102,"passed_time":0.02921086504,"remaining_time":0.2543897664},
107
+ {"learn":[5.311032429],"iteration":103,"passed_time":0.02946372156,"remaining_time":0.2538412935},
108
+ {"learn":[5.301887471],"iteration":104,"passed_time":0.02986140083,"remaining_time":0.2545328928},
109
+ {"learn":[5.291511894],"iteration":105,"passed_time":0.03032345039,"remaining_time":0.2557468363},
110
+ {"learn":[5.28149165],"iteration":106,"passed_time":0.0305924724,"remaining_time":0.2553184846},
111
+ {"learn":[5.272145091],"iteration":107,"passed_time":0.03087220195,"remaining_time":0.2549815198},
112
+ {"learn":[5.264393073],"iteration":108,"passed_time":0.03112718332,"remaining_time":0.2544433058},
113
+ {"learn":[5.257582673],"iteration":109,"passed_time":0.03133691799,"remaining_time":0.2535441546},
114
+ {"learn":[5.250180575],"iteration":110,"passed_time":0.0316267718,"remaining_time":0.2532991003},
115
+ {"learn":[5.240350576],"iteration":111,"passed_time":0.03186146298,"remaining_time":0.2526158851},
116
+ {"learn":[5.23255234],"iteration":112,"passed_time":0.03218268951,"remaining_time":0.2526198725},
117
+ {"learn":[5.225766752],"iteration":113,"passed_time":0.03244192056,"remaining_time":0.25213633},
118
+ {"learn":[5.21808604],"iteration":114,"passed_time":0.03270269317,"remaining_time":0.2516685518},
119
+ {"learn":[5.209445346],"iteration":115,"passed_time":0.03293488453,"remaining_time":0.2509865338},
120
+ {"learn":[5.200614621],"iteration":116,"passed_time":0.03318215812,"remaining_time":0.250426031},
121
+ {"learn":[5.192995601],"iteration":117,"passed_time":0.03344093088,"remaining_time":0.2499567884},
122
+ {"learn":[5.183477277],"iteration":118,"passed_time":0.0336951623,"remaining_time":0.249457462},
123
+ {"learn":[5.176857565],"iteration":119,"passed_time":0.0339614345,"remaining_time":0.2490505197},
124
+ {"learn":[5.168768902],"iteration":120,"passed_time":0.03424391386,"remaining_time":0.2487636387},
125
+ {"learn":[5.163146229],"iteration":121,"passed_time":0.03463421866,"remaining_time":0.2492528196},
126
+ {"learn":[5.155642108],"iteration":122,"passed_time":0.03488836675,"remaining_time":0.2487568914},
127
+ {"learn":[5.151430906],"iteration":123,"passed_time":0.0351559722,"remaining_time":0.2483599326},
128
+ {"learn":[5.146832937],"iteration":124,"passed_time":0.0353902884,"remaining_time":0.2477320188},
129
+ {"learn":[5.138945313],"iteration":125,"passed_time":0.03563485386,"remaining_time":0.2471814466},
130
+ {"learn":[5.131760576],"iteration":126,"passed_time":0.03591979137,"remaining_time":0.2469132115},
131
+ {"learn":[5.123648119],"iteration":127,"passed_time":0.03618535529,"remaining_time":0.2465127329},
132
+ {"learn":[5.118605987],"iteration":128,"passed_time":0.03642937913,"remaining_time":0.2459689087},
133
+ {"learn":[5.111073959],"iteration":129,"passed_time":0.03667223638,"remaining_time":0.2454218896},
134
+ {"learn":[5.105838441],"iteration":130,"passed_time":0.03694842452,"remaining_time":0.2451006176},
135
+ {"learn":[5.098692245],"iteration":131,"passed_time":0.0372205713,"remaining_time":0.2447534537},
136
+ {"learn":[5.092413908],"iteration":132,"passed_time":0.03752863212,"remaining_time":0.2446415342},
137
+ {"learn":[5.087136879],"iteration":133,"passed_time":0.03778844646,"remaining_time":0.2442148853},
138
+ {"learn":[5.077511908],"iteration":134,"passed_time":0.03806767605,"remaining_time":0.2439151095},
139
+ {"learn":[5.072893764],"iteration":135,"passed_time":0.03832899029,"remaining_time":0.2435018206},
140
+ {"learn":[5.067641332],"iteration":136,"passed_time":0.03859922054,"remaining_time":0.2431469148},
141
+ {"learn":[5.062842921],"iteration":137,"passed_time":0.03885016053,"remaining_time":0.2426727419},
142
+ {"learn":[5.058220375],"iteration":138,"passed_time":0.03910376699,"remaining_time":0.2422182977},
143
+ {"learn":[5.05313532],"iteration":139,"passed_time":0.03936787269,"remaining_time":0.241831218},
144
+ {"learn":[5.044193513],"iteration":140,"passed_time":0.0396226874,"remaining_time":0.24138928},
145
+ {"learn":[5.034908156],"iteration":141,"passed_time":0.03988891794,"remaining_time":0.2410189549},
146
+ {"learn":[5.027535466],"iteration":142,"passed_time":0.04015731499,"remaining_time":0.2406630696},
147
+ {"learn":[5.022438844],"iteration":143,"passed_time":0.04039888067,"remaining_time":0.2401489018},
148
+ {"learn":[5.016225517],"iteration":144,"passed_time":0.04063307189,"remaining_time":0.2395950101},
149
+ {"learn":[5.011990502],"iteration":145,"passed_time":0.04087922056,"remaining_time":0.2391154408},
150
+ {"learn":[5.007083832],"iteration":146,"passed_time":0.04110541236,"remaining_time":0.2385232432},
151
+ {"learn":[5.003116679],"iteration":147,"passed_time":0.04137939234,"remaining_time":0.2382110964},
152
+ {"learn":[4.996306811],"iteration":148,"passed_time":0.04167749555,"remaining_time":0.2380372397},
153
+ {"learn":[4.99254133],"iteration":149,"passed_time":0.04200605487,"remaining_time":0.2380343109},
154
+ {"learn":[4.989054834],"iteration":150,"passed_time":0.04225337013,"remaining_time":0.2375702731},
155
+ {"learn":[4.983255177],"iteration":151,"passed_time":0.04263125918,"remaining_time":0.2378375512},
156
+ {"learn":[4.979400743],"iteration":152,"passed_time":0.04298910802,"remaining_time":0.2379854542},
157
+ {"learn":[4.976142511],"iteration":153,"passed_time":0.04327721197,"remaining_time":0.237743645},
158
+ {"learn":[4.967694858],"iteration":154,"passed_time":0.04355069198,"remaining_time":0.2374215143},
159
+ {"learn":[4.964102333],"iteration":155,"passed_time":0.04382875499,"remaining_time":0.2371248026},
160
+ {"learn":[4.959150127],"iteration":156,"passed_time":0.04413835736,"remaining_time":0.2369976768},
161
+ {"learn":[4.950493915],"iteration":157,"passed_time":0.04445250107,"remaining_time":0.2368924424},
162
+ {"learn":[4.943039487],"iteration":158,"passed_time":0.04471356532,"remaining_time":0.2365038266},
163
+ {"learn":[4.939860812],"iteration":159,"passed_time":0.04498537879,"remaining_time":0.2361732386},
164
+ {"learn":[4.935677432],"iteration":160,"passed_time":0.04522119488,"remaining_time":0.235655792},
165
+ {"learn":[4.928796208],"iteration":161,"passed_time":0.04546463543,"remaining_time":0.2351812623},
166
+ {"learn":[4.924471875],"iteration":162,"passed_time":0.04580202743,"remaining_time":0.2351920059},
167
+ {"learn":[4.919730347],"iteration":163,"passed_time":0.04609071467,"remaining_time":0.2349502284},
168
+ {"learn":[4.91250271],"iteration":164,"passed_time":0.04633957148,"remaining_time":0.2345063163},
169
+ {"learn":[4.90210769],"iteration":165,"passed_time":0.04663409162,"remaining_time":0.2342941711},
170
+ {"learn":[4.899303282],"iteration":166,"passed_time":0.04692469538,"remaining_time":0.2340615045},
171
+ {"learn":[4.894357726],"iteration":167,"passed_time":0.0472030917,"remaining_time":0.2337676922},
172
+ {"learn":[4.889448852],"iteration":168,"passed_time":0.04756414864,"remaining_time":0.2338805179},
173
+ {"learn":[4.886739966],"iteration":169,"passed_time":0.04785596065,"remaining_time":0.2336496902},
174
+ {"learn":[4.881971886],"iteration":170,"passed_time":0.04820451851,"remaining_time":0.2336932505},
175
+ {"learn":[4.878871351],"iteration":171,"passed_time":0.04850787134,"remaining_time":0.2335146364},
176
+ {"learn":[4.873387828],"iteration":172,"passed_time":0.04884422175,"remaining_time":0.2334923202},
177
+ {"learn":[4.869110532],"iteration":173,"passed_time":0.04920457041,"remaining_time":0.233580317},
178
+ {"learn":[4.86144216],"iteration":174,"passed_time":0.04956212762,"remaining_time":0.2336500302},
179
+ {"learn":[4.855007324],"iteration":175,"passed_time":0.04983623258,"remaining_time":0.2333241798},
180
+ {"learn":[4.849578341],"iteration":176,"passed_time":0.05015725079,"remaining_time":0.2332170474},
181
+ {"learn":[4.846068054],"iteration":177,"passed_time":0.05042077319,"remaining_time":0.2328419975},
182
+ {"learn":[4.840616045],"iteration":178,"passed_time":0.05071962635,"remaining_time":0.2326302415},
183
+ {"learn":[4.836353044],"iteration":179,"passed_time":0.05096615,"remaining_time":0.2321791278},
184
+ {"learn":[4.830015707],"iteration":180,"passed_time":0.05127041943,"remaining_time":0.2319915664},
185
+ {"learn":[4.82561487],"iteration":181,"passed_time":0.05154056635,"remaining_time":0.2316493586},
186
+ {"learn":[4.822339225],"iteration":182,"passed_time":0.05180017237,"remaining_time":0.2312608789},
187
+ {"learn":[4.816229344],"iteration":183,"passed_time":0.05204165473,"remaining_time":0.2307934253},
188
+ {"learn":[4.813222208],"iteration":184,"passed_time":0.05229659443,"remaining_time":0.2303876998},
189
+ {"learn":[4.809062815],"iteration":185,"passed_time":0.05255232573,"remaining_time":0.2299870599},
190
+ {"learn":[4.805320748],"iteration":186,"passed_time":0.05280872366,"remaining_time":0.2295908681},
191
+ {"learn":[4.799344347],"iteration":187,"passed_time":0.0530585804,"remaining_time":0.2291679111},
192
+ {"learn":[4.794786572],"iteration":188,"passed_time":0.05330777052,"remaining_time":0.2287439254},
193
+ {"learn":[4.791217685],"iteration":189,"passed_time":0.05355187768,"remaining_time":0.2283001101},
194
+ {"learn":[4.788386147],"iteration":190,"passed_time":0.0537901936,"remaining_time":0.2278338566},
195
+ {"learn":[4.78371247],"iteration":191,"passed_time":0.05402205165,"remaining_time":0.2273428007},
196
+ {"learn":[4.781450393],"iteration":192,"passed_time":0.05430048963,"remaining_time":0.2270491976},
197
+ {"learn":[4.778075167],"iteration":193,"passed_time":0.05458217738,"remaining_time":0.2267692524},
198
+ {"learn":[4.775363269],"iteration":194,"passed_time":0.05485374086,"remaining_time":0.2264474943},
199
+ {"learn":[4.771428798],"iteration":195,"passed_time":0.05512980402,"remaining_time":0.2261447063},
200
+ {"learn":[4.769591154],"iteration":196,"passed_time":0.0553978261,"remaining_time":0.225809413},
201
+ {"learn":[4.765449522],"iteration":197,"passed_time":0.0556468079,"remaining_time":0.2253976764},
202
+ {"learn":[4.760659277],"iteration":198,"passed_time":0.05588833191,"remaining_time":0.2249575571},
203
+ {"learn":[4.755469841],"iteration":199,"passed_time":0.05613856362,"remaining_time":0.2245542545},
204
+ {"learn":[4.751305719],"iteration":200,"passed_time":0.05640775228,"remaining_time":0.2242278312},
205
+ {"learn":[4.74613286],"iteration":201,"passed_time":0.05667123303,"remaining_time":0.2238794255},
206
+ {"learn":[4.74228704],"iteration":202,"passed_time":0.056908799,"remaining_time":0.2234301123},
207
+ {"learn":[4.740344894],"iteration":203,"passed_time":0.05716861334,"remaining_time":0.2230696873},
208
+ {"learn":[4.736920435],"iteration":204,"passed_time":0.05741955333,"remaining_time":0.2226758288},
209
+ {"learn":[4.734062199],"iteration":205,"passed_time":0.05767603459,"remaining_time":0.2223047158},
210
+ {"learn":[4.731715154],"iteration":206,"passed_time":0.05792039173,"remaining_time":0.221888264},
211
+ {"learn":[4.728588802],"iteration":207,"passed_time":0.05816220739,"remaining_time":0.2214637897},
212
+ {"learn":[4.724947154],"iteration":208,"passed_time":0.05843718729,"remaining_time":0.2211665796},
213
+ {"learn":[4.7199548],"iteration":209,"passed_time":0.05869975143,"remaining_time":0.2208228744},
214
+ {"learn":[4.718091098],"iteration":210,"passed_time":0.05898810536,"remaining_time":0.220576375},
215
+ {"learn":[4.716063624],"iteration":211,"passed_time":0.05927537603,"remaining_time":0.2203254543},
216
+ {"learn":[4.714224061],"iteration":212,"passed_time":0.05964134928,"remaining_time":0.2203649854},
217
+ {"learn":[4.713531362],"iteration":213,"passed_time":0.06003532049,"remaining_time":0.2205035603},
218
+ {"learn":[4.709308358],"iteration":214,"passed_time":0.06030117606,"remaining_time":0.2201694102},
219
+ {"learn":[4.702970862],"iteration":215,"passed_time":0.06056574005,"remaining_time":0.2198312046},
220
+ {"learn":[4.69850639],"iteration":216,"passed_time":0.06082517942,"remaining_time":0.2194751866},
221
+ {"learn":[4.693399542],"iteration":217,"passed_time":0.06111678311,"remaining_time":0.219235433},
222
+ {"learn":[4.689012311],"iteration":218,"passed_time":0.06144338424,"remaining_time":0.2191200141},
223
+ {"learn":[4.685781341],"iteration":219,"passed_time":0.06167353409,"remaining_time":0.2186607118},
224
+ {"learn":[4.682895342],"iteration":220,"passed_time":0.06198430304,"remaining_time":0.2184876564},
225
+ {"learn":[4.675457775],"iteration":221,"passed_time":0.06225053358,"remaining_time":0.2181572753},
226
+ {"learn":[4.673717861],"iteration":222,"passed_time":0.06250930633,"remaining_time":0.2178014844},
227
+ {"learn":[4.66796126],"iteration":223,"passed_time":0.06277924494,"remaining_time":0.2174852414},
228
+ {"learn":[4.664657176],"iteration":224,"passed_time":0.0630912638,"remaining_time":0.2173143531},
229
+ {"learn":[4.662438059],"iteration":225,"passed_time":0.06333103794,"remaining_time":0.2168947937},
230
+ {"learn":[4.660454475],"iteration":226,"passed_time":0.06361522551,"remaining_time":0.2166280587},
231
+ {"learn":[4.655249615],"iteration":227,"passed_time":0.06388812223,"remaining_time":0.2163229402},
232
+ {"learn":[4.652033732],"iteration":228,"passed_time":0.06423768001,"remaining_time":0.2162762065},
233
+ {"learn":[4.647016316],"iteration":229,"passed_time":0.06448345372,"remaining_time":0.2158793885},
234
+ {"learn":[4.645334563],"iteration":230,"passed_time":0.06473297715,"remaining_time":0.2154963611},
235
+ {"learn":[4.639917142],"iteration":231,"passed_time":0.0649762927,"remaining_time":0.2150939344},
236
+ {"learn":[4.637271104],"iteration":232,"passed_time":0.06521652514,"remaining_time":0.2146827244},
237
+ {"learn":[4.629314146],"iteration":233,"passed_time":0.0654482582,"remaining_time":0.2142451529},
238
+ {"learn":[4.627390624],"iteration":234,"passed_time":0.06571607196,"remaining_time":0.2139267874},
239
+ {"learn":[4.624820749],"iteration":235,"passed_time":0.06599475992,"remaining_time":0.2136440533},
240
+ {"learn":[4.620538965],"iteration":236,"passed_time":0.0662779059,"remaining_time":0.2133757055},
241
+ {"learn":[4.617880017],"iteration":237,"passed_time":0.06653222064,"remaining_time":0.2130149249},
242
+ {"learn":[4.615611002],"iteration":238,"passed_time":0.06678753532,"remaining_time":0.2126582191},
243
+ {"learn":[4.610093142],"iteration":239,"passed_time":0.06705439081,"remaining_time":0.2123389042},
244
+ {"learn":[4.607865741],"iteration":240,"passed_time":0.06729304004,"remaining_time":0.2119311925},
245
+ {"learn":[4.604587452],"iteration":241,"passed_time":0.06757526941,"remaining_time":0.211661381},
246
+ {"learn":[4.603714753],"iteration":242,"passed_time":0.06784362479,"remaining_time":0.2113482468},
247
+ {"learn":[4.602173869],"iteration":243,"passed_time":0.0680921483,"remaining_time":0.2109740332},
248
+ {"learn":[4.599118041],"iteration":244,"passed_time":0.06835562904,"remaining_time":0.2106469385},
249
+ {"learn":[4.592606239],"iteration":245,"passed_time":0.06861715159,"remaining_time":0.2103143589},
250
+ {"learn":[4.590147825],"iteration":246,"passed_time":0.06888909005,"remaining_time":0.2100141085},
251
+ {"learn":[4.587448447],"iteration":247,"passed_time":0.06917819392,"remaining_time":0.2097661364},
252
+ {"learn":[4.581530029],"iteration":248,"passed_time":0.06943446686,"remaining_time":0.2094188137},
253
+ {"learn":[4.576795625],"iteration":249,"passed_time":0.06968715672,"remaining_time":0.2090614702},
254
+ {"learn":[4.572572662],"iteration":250,"passed_time":0.06995009584,"remaining_time":0.2087355449},
255
+ {"learn":[4.571131755],"iteration":251,"passed_time":0.07019628618,"remaining_time":0.208360405},
256
+ {"learn":[4.564834493],"iteration":252,"passed_time":0.07053659464,"remaining_time":0.2082641747},
257
+ {"learn":[4.56091144],"iteration":253,"passed_time":0.0707993671,"remaining_time":0.2079382986},
258
+ {"learn":[4.554152668],"iteration":254,"passed_time":0.07112317677,"remaining_time":0.2077912419},
259
+ {"learn":[4.545912243],"iteration":255,"passed_time":0.07137553332,"remaining_time":0.2074351437},
260
+ {"learn":[4.541765951],"iteration":256,"passed_time":0.07173909008,"remaining_time":0.2074013383},
261
+ {"learn":[4.538883182],"iteration":257,"passed_time":0.07202186108,"remaining_time":0.2071326392},
262
+ {"learn":[4.534978446],"iteration":258,"passed_time":0.07234562909,"remaining_time":0.2069811241},
263
+ {"learn":[4.531276413],"iteration":259,"passed_time":0.07260540177,"remaining_time":0.2066461435},
264
+ {"learn":[4.529674704],"iteration":260,"passed_time":0.07290617145,"remaining_time":0.2064278188},
265
+ {"learn":[4.525108817],"iteration":261,"passed_time":0.07316394428,"remaining_time":0.2060877514},
266
+ {"learn":[4.520023134],"iteration":262,"passed_time":0.07343884085,"remaining_time":0.2057962955},
267
+ {"learn":[4.513845655],"iteration":263,"passed_time":0.07373865227,"remaining_time":0.2055744245},
268
+ {"learn":[4.513127245],"iteration":264,"passed_time":0.07400013316,"remaining_time":0.2052456524},
269
+ {"learn":[4.509871075],"iteration":265,"passed_time":0.07426715531,"remaining_time":0.2049326767},
270
+ {"learn":[4.506099125],"iteration":266,"passed_time":0.07451130414,"remaining_time":0.2045572507},
271
+ {"learn":[4.504927057],"iteration":267,"passed_time":0.07478899217,"remaining_time":0.2042744115},
272
+ {"learn":[4.497894799],"iteration":268,"passed_time":0.07505626431,"remaining_time":0.2039633056},
273
+ {"learn":[4.493386766],"iteration":269,"passed_time":0.07532720284,"remaining_time":0.2036624373},
274
+ {"learn":[4.49151442],"iteration":270,"passed_time":0.07559747475,"remaining_time":0.2033599967},
275
+ {"learn":[4.490824078],"iteration":271,"passed_time":0.07586462189,"remaining_time":0.2030494292},
276
+ {"learn":[4.486517123],"iteration":272,"passed_time":0.07612806097,"remaining_time":0.2027293052},
277
+ {"learn":[4.485509041],"iteration":273,"passed_time":0.07636537696,"remaining_time":0.2023403784},
278
+ {"learn":[4.478635858],"iteration":274,"passed_time":0.07662327478,"remaining_time":0.2020068153},
279
+ {"learn":[4.476141616],"iteration":275,"passed_time":0.0769021294,"remaining_time":0.2017287742},
280
+ {"learn":[4.47389577],"iteration":276,"passed_time":0.07715527756,"remaining_time":0.2013836306},
281
+ {"learn":[4.470926914],"iteration":277,"passed_time":0.07739692657,"remaining_time":0.2010092841},
282
+ {"learn":[4.465984122],"iteration":278,"passed_time":0.07766336543,"remaining_time":0.2006999515},
283
+ {"learn":[4.462169451],"iteration":279,"passed_time":0.07791976335,"remaining_time":0.2003651058},
284
+ {"learn":[4.454121613],"iteration":280,"passed_time":0.07816070408,"remaining_time":0.1999912677},
285
+ {"learn":[4.453048966],"iteration":281,"passed_time":0.07839781175,"remaining_time":0.1996086129},
286
+ {"learn":[4.448305637],"iteration":282,"passed_time":0.07866904192,"remaining_time":0.1993134384},
287
+ {"learn":[4.44538271],"iteration":283,"passed_time":0.07892356499,"remaining_time":0.1989763117},
288
+ {"learn":[4.444748871],"iteration":284,"passed_time":0.07916925536,"remaining_time":0.1986176056},
289
+ {"learn":[4.441429175],"iteration":285,"passed_time":0.07940511312,"remaining_time":0.1982351426},
290
+ {"learn":[4.439304577],"iteration":286,"passed_time":0.07965801131,"remaining_time":0.1978960351},
291
+ {"learn":[4.431206801],"iteration":287,"passed_time":0.07990765973,"remaining_time":0.1975494921},
292
+ {"learn":[4.430512668],"iteration":288,"passed_time":0.08014580899,"remaining_time":0.1971753294},
293
+ {"learn":[4.429619628],"iteration":289,"passed_time":0.08036229317,"remaining_time":0.1967490626},
294
+ {"learn":[4.4267443],"iteration":290,"passed_time":0.08061131663,"remaining_time":0.1964035172},
295
+ {"learn":[4.42450129],"iteration":291,"passed_time":0.08085596542,"remaining_time":0.1960480257},
296
+ {"learn":[4.417559487],"iteration":292,"passed_time":0.08109528126,"remaining_time":0.1956804227},
297
+ {"learn":[4.414609808],"iteration":293,"passed_time":0.08132743096,"remaining_time":0.1952964839},
298
+ {"learn":[4.406171939],"iteration":294,"passed_time":0.08158974512,"remaining_time":0.1949856621},
299
+ {"learn":[4.40002785],"iteration":295,"passed_time":0.08186476669,"remaining_time":0.194705391},
300
+ {"learn":[4.399196885],"iteration":296,"passed_time":0.08210991544,"remaining_time":0.1943544463},
301
+ {"learn":[4.393559612],"iteration":297,"passed_time":0.08234810636,"remaining_time":0.193987821},
302
+ {"learn":[4.389540858],"iteration":298,"passed_time":0.08259317178,"remaining_time":0.193638172},
303
+ {"learn":[4.385905506],"iteration":299,"passed_time":0.08288631702,"remaining_time":0.1934014064},
304
+ {"learn":[4.385097212],"iteration":300,"passed_time":0.08316317179,"remaining_time":0.1931264355},
305
+ {"learn":[4.38377915],"iteration":301,"passed_time":0.08343656847,"remaining_time":0.1928434596},
306
+ {"learn":[4.380358106],"iteration":302,"passed_time":0.08371617304,"remaining_time":0.1925748271},
307
+ {"learn":[4.37303847],"iteration":303,"passed_time":0.08399736082,"remaining_time":0.1923097471},
308
+ {"learn":[4.369526346],"iteration":304,"passed_time":0.08424134299,"remaining_time":0.1919597816},
309
+ {"learn":[4.363321831],"iteration":305,"passed_time":0.08446270181,"remaining_time":0.1915591995},
310
+ {"learn":[4.36144972],"iteration":306,"passed_time":0.08472501597,"remaining_time":0.1912522348},
311
+ {"learn":[4.354847006],"iteration":307,"passed_time":0.08502324417,"remaining_time":0.1910262499},
312
+ {"learn":[4.352472989],"iteration":308,"passed_time":0.08531772265,"remaining_time":0.1907914121},
313
+ {"learn":[4.346688804],"iteration":309,"passed_time":0.08559570234,"remaining_time":0.1905194665},
314
+ {"learn":[4.343237072],"iteration":310,"passed_time":0.0858679741,"remaining_time":0.1902348365},
315
+ {"learn":[4.340350164],"iteration":311,"passed_time":0.08609891556,"remaining_time":0.1898591471},
316
+ {"learn":[4.333921122],"iteration":312,"passed_time":0.08638076996,"remaining_time":0.1895961309},
317
+ {"learn":[4.330232529],"iteration":313,"passed_time":0.08665416664,"remaining_time":0.1893145169},
318
+ {"learn":[4.32838479],"iteration":314,"passed_time":0.08693739594,"remaining_time":0.1890543372},
319
+ {"learn":[4.323854013],"iteration":315,"passed_time":0.08719046078,"remaining_time":0.1887287189},
320
+ {"learn":[4.322053685],"iteration":316,"passed_time":0.08745839953,"remaining_time":0.1884356053},
321
+ {"learn":[4.315063493],"iteration":317,"passed_time":0.08772488005,"remaining_time":0.1881395226},
322
+ {"learn":[4.310576801],"iteration":318,"passed_time":0.0879604045,"remaining_time":0.1877775407},
323
+ {"learn":[4.307173161],"iteration":319,"passed_time":0.08819251254,"remaining_time":0.1874090891},
324
+ {"learn":[4.306421463],"iteration":320,"passed_time":0.08843428654,"remaining_time":0.1870619332},
325
+ {"learn":[4.301930471],"iteration":321,"passed_time":0.08872180719,"remaining_time":0.1868117555},
326
+ {"learn":[4.296318941],"iteration":322,"passed_time":0.08897224722,"remaining_time":0.1864836265},
327
+ {"learn":[4.292536859],"iteration":323,"passed_time":0.08922631198,"remaining_time":0.1861635398},
328
+ {"learn":[4.28585978],"iteration":324,"passed_time":0.08946716938,"remaining_time":0.1858164287},
329
+ {"learn":[4.278336336],"iteration":325,"passed_time":0.0897451074,"remaining_time":0.1855466331},
330
+ {"learn":[4.271154999],"iteration":326,"passed_time":0.09000483841,"remaining_time":0.1852393158},
331
+ {"learn":[4.267657725],"iteration":327,"passed_time":0.09024861226,"remaining_time":0.1848995959},
332
+ {"learn":[4.263390188],"iteration":328,"passed_time":0.09050063551,"remaining_time":0.184577284},
333
+ {"learn":[4.258918732],"iteration":329,"passed_time":0.09072670232,"remaining_time":0.1842026987},
334
+ {"learn":[4.257080894],"iteration":330,"passed_time":0.09098405851,"remaining_time":0.1838922512},
335
+ {"learn":[4.253227555],"iteration":331,"passed_time":0.09125374713,"remaining_time":0.183606937},
336
+ {"learn":[4.245955597],"iteration":332,"passed_time":0.09153114353,"remaining_time":0.1833371554},
337
+ {"learn":[4.244894649],"iteration":333,"passed_time":0.091825747,"remaining_time":0.1831016392},
338
+ {"learn":[4.243272233],"iteration":334,"passed_time":0.09206106313,"remaining_time":0.1827480805},
339
+ {"learn":[4.238309594],"iteration":335,"passed_time":0.09234991702,"remaining_time":0.1825010265},
340
+ {"learn":[4.235600207],"iteration":336,"passed_time":0.09276351179,"remaining_time":0.1824991345},
341
+ {"learn":[4.229207272],"iteration":337,"passed_time":0.09317585665,"remaining_time":0.1824923583},
342
+ {"learn":[4.226112706],"iteration":338,"passed_time":0.09353353884,"remaining_time":0.1823766052},
343
+ {"learn":[4.225043188],"iteration":339,"passed_time":0.09384718259,"remaining_time":0.1821739427},
344
+ {"learn":[4.224607115],"iteration":340,"passed_time":0.09409783093,"remaining_time":0.1818488873},
345
+ {"learn":[4.223565557],"iteration":341,"passed_time":0.09436847782,"remaining_time":0.1815627439},
346
+ {"learn":[4.221156199],"iteration":342,"passed_time":0.09461870953,"remaining_time":0.1812375865},
347
+ {"learn":[4.216025145],"iteration":343,"passed_time":0.09486356663,"remaining_time":0.1809026154},
348
+ {"learn":[4.211757058],"iteration":344,"passed_time":0.09511354836,"remaining_time":0.1805778962},
349
+ {"learn":[4.211063947],"iteration":345,"passed_time":0.09539777759,"remaining_time":0.1803183426},
350
+ {"learn":[4.207303205],"iteration":346,"passed_time":0.09564242638,"remaining_time":0.1799841626},
351
+ {"learn":[4.203295029],"iteration":347,"passed_time":0.09589903262,"remaining_time":0.1796729002},
352
+ {"learn":[4.20266981],"iteration":348,"passed_time":0.09617017947,"remaining_time":0.179389074},
353
+ {"learn":[4.199546031],"iteration":349,"passed_time":0.09648619804,"remaining_time":0.1791886535},
354
+ {"learn":[4.197399649],"iteration":350,"passed_time":0.0967662609,"remaining_time":0.1789210921},
355
+ {"learn":[4.196674325],"iteration":351,"passed_time":0.09706582234,"remaining_time":0.1786893548},
356
+ {"learn":[4.190519914],"iteration":352,"passed_time":0.09741829658,"remaining_time":0.178554215},
357
+ {"learn":[4.185534852],"iteration":353,"passed_time":0.097658904,"remaining_time":0.1782137062},
358
+ {"learn":[4.181236034],"iteration":354,"passed_time":0.09792113483,"remaining_time":0.1779130478},
359
+ {"learn":[4.177082121],"iteration":355,"passed_time":0.09817111656,"remaining_time":0.1775904468},
360
+ {"learn":[4.172078436],"iteration":356,"passed_time":0.09842688953,"remaining_time":0.1772786834},
361
+ {"learn":[4.167322871],"iteration":357,"passed_time":0.09868566229,"remaining_time":0.1769726123},
362
+ {"learn":[4.160753887],"iteration":358,"passed_time":0.09893851881,"remaining_time":0.1766562411},
363
+ {"learn":[4.15797125],"iteration":359,"passed_time":0.09920604092,"remaining_time":0.176366295},
364
+ {"learn":[4.153810828],"iteration":360,"passed_time":0.09944648168,"remaining_time":0.1760285368},
365
+ {"learn":[4.149274528],"iteration":361,"passed_time":0.09969225538,"remaining_time":0.1757007153},
366
+ {"learn":[4.148634197],"iteration":362,"passed_time":0.09995936086,"remaining_time":0.1754107793},
367
+ {"learn":[4.148031909],"iteration":363,"passed_time":0.1002050512,"remaining_time":0.1750835511},
368
+ {"learn":[4.146042091],"iteration":364,"passed_time":0.1004718234,"remaining_time":0.1747934462},
369
+ {"learn":[4.141638955],"iteration":365,"passed_time":0.1007599273,"remaining_time":0.1745404206},
370
+ {"learn":[4.137014803],"iteration":366,"passed_time":0.1010055761,"remaining_time":0.1742139772},
371
+ {"learn":[4.130108824],"iteration":367,"passed_time":0.1012893053,"remaining_time":0.1739533722},
372
+ {"learn":[4.128868242],"iteration":368,"passed_time":0.1015462865,"remaining_time":0.1736469019},
373
+ {"learn":[4.12840523],"iteration":369,"passed_time":0.1017971015,"remaining_time":0.1733301999},
374
+ {"learn":[4.125212124],"iteration":370,"passed_time":0.1020628738,"remaining_time":0.1730392119},
375
+ {"learn":[4.123724441],"iteration":371,"passed_time":0.1023085642,"remaining_time":0.1727144578},
376
+ {"learn":[4.119877678],"iteration":372,"passed_time":0.1025542129,"remaining_time":0.1723900576},
377
+ {"learn":[4.114368022],"iteration":373,"passed_time":0.1028376505,"remaining_time":0.1721293294},
378
+ {"learn":[4.112013827],"iteration":374,"passed_time":0.1031064642,"remaining_time":0.171844107},
379
+ {"learn":[4.108458484],"iteration":375,"passed_time":0.1033534878,"remaining_time":0.1715228095},
380
+ {"learn":[4.10311947],"iteration":376,"passed_time":0.1036125939,"remaining_time":0.1712218726},
381
+ {"learn":[4.099862365],"iteration":377,"passed_time":0.1038493682,"remaining_time":0.1708844101},
382
+ {"learn":[4.095969525],"iteration":378,"passed_time":0.1041180986,"remaining_time":0.1705998396},
383
+ {"learn":[4.095051444],"iteration":379,"passed_time":0.1043831209,"remaining_time":0.1703093025},
384
+ {"learn":[4.093668934],"iteration":380,"passed_time":0.1046520179,"remaining_time":0.1700251944},
385
+ {"learn":[4.087958241],"iteration":381,"passed_time":0.1049711196,"remaining_time":0.1698223871},
386
+ {"learn":[4.083809477],"iteration":382,"passed_time":0.105224601,"remaining_time":0.1695132607},
387
+ {"learn":[4.079405368],"iteration":383,"passed_time":0.105499331,"remaining_time":0.1692385101},
388
+ {"learn":[4.078958707],"iteration":384,"passed_time":0.1057711028,"remaining_time":0.1689590343},
389
+ {"learn":[4.074270819],"iteration":385,"passed_time":0.1060054606,"remaining_time":0.168620085},
390
+ {"learn":[4.068982879],"iteration":386,"passed_time":0.1062727328,"remaining_time":0.1683338118},
391
+ {"learn":[4.066919195],"iteration":387,"passed_time":0.1065152567,"remaining_time":0.1680086008},
392
+ {"learn":[4.063040347],"iteration":388,"passed_time":0.1067894033,"remaining_time":0.1677334844},
393
+ {"learn":[4.059965604],"iteration":389,"passed_time":0.1070732159,"remaining_time":0.1674734916},
394
+ {"learn":[4.056466413],"iteration":390,"passed_time":0.1073112402,"remaining_time":0.1671420595},
395
+ {"learn":[4.052251448],"iteration":391,"passed_time":0.1075498894,"remaining_time":0.1668120734},
396
+ {"learn":[4.049116984],"iteration":392,"passed_time":0.1078036209,"remaining_time":0.166505847},
397
+ {"learn":[4.046702367],"iteration":393,"passed_time":0.1080739345,"remaining_time":0.1662253916},
398
+ {"learn":[4.043968668],"iteration":394,"passed_time":0.1083182083,"remaining_time":0.1659051038},
399
+ {"learn":[4.037689325],"iteration":395,"passed_time":0.1085809807,"remaining_time":0.165613415},
400
+ {"learn":[4.034248821],"iteration":396,"passed_time":0.1088923746,"remaining_time":0.1653957227},
401
+ {"learn":[4.030151804],"iteration":397,"passed_time":0.1091756456,"remaining_time":0.1651350217},
402
+ {"learn":[4.026308025],"iteration":398,"passed_time":0.109429502,"remaining_time":0.1648299016},
403
+ {"learn":[4.02549331],"iteration":399,"passed_time":0.1097746018,"remaining_time":0.1646619027},
404
+ {"learn":[4.024503944],"iteration":400,"passed_time":0.1100206672,"remaining_time":0.1643450864},
405
+ {"learn":[4.022285786],"iteration":401,"passed_time":0.1102958137,"remaining_time":0.1640718821},
406
+ {"learn":[4.020459724],"iteration":402,"passed_time":0.1105649191,"remaining_time":0.1637897188},
407
+ {"learn":[4.019976123],"iteration":403,"passed_time":0.1107899026,"remaining_time":0.1634425296},
408
+ {"learn":[4.015411374],"iteration":404,"passed_time":0.1111344608,"remaining_time":0.1632716152},
409
+ {"learn":[4.012459384],"iteration":405,"passed_time":0.1114214398,"remaining_time":0.163015604},
410
+ {"learn":[4.008763792],"iteration":406,"passed_time":0.1117775388,"remaining_time":0.1628601486},
411
+ {"learn":[4.00457713],"iteration":407,"passed_time":0.1122246728,"remaining_time":0.1628357997},
412
+ {"learn":[3.999604683],"iteration":408,"passed_time":0.1127585504,"remaining_time":0.1629347269},
413
+ {"learn":[3.998709615],"iteration":409,"passed_time":0.1130792353,"remaining_time":0.1627237776},
414
+ {"learn":[3.995654005],"iteration":410,"passed_time":0.1133316752,"remaining_time":0.1624144931},
415
+ {"learn":[3.991188181],"iteration":411,"passed_time":0.1135772822,"remaining_time":0.1620957329},
416
+ {"learn":[3.987484525],"iteration":412,"passed_time":0.1138401797,"remaining_time":0.1618019019},
417
+ {"learn":[3.987244546],"iteration":413,"passed_time":0.1140197499,"remaining_time":0.161390274},
418
+ {"learn":[3.983688234],"iteration":414,"passed_time":0.1143117285,"remaining_time":0.1611382198},
419
+ {"learn":[3.978441912],"iteration":415,"passed_time":0.1145590438,"remaining_time":0.160823273},
420
+ {"learn":[3.975259443],"iteration":416,"passed_time":0.1148058591,"remaining_time":0.1605079517},
421
+ {"learn":[3.972340676],"iteration":417,"passed_time":0.115086047,"remaining_time":0.1602394242},
422
+ {"learn":[3.970139142],"iteration":418,"passed_time":0.1153351537,"remaining_time":0.159927743},
423
+ {"learn":[3.966907249],"iteration":419,"passed_time":0.1155901768,"remaining_time":0.1596245298},
424
+ {"learn":[3.963717401],"iteration":420,"passed_time":0.1158641984,"remaining_time":0.1593476743},
425
+ {"learn":[3.960864992],"iteration":421,"passed_time":0.1161327621,"remaining_time":0.1590633566},
426
+ {"learn":[3.960507096],"iteration":422,"passed_time":0.1163800357,"remaining_time":0.1587500724},
427
+ {"learn":[3.958150017],"iteration":423,"passed_time":0.1166214347,"remaining_time":0.1584291189},
428
+ {"learn":[3.953509954],"iteration":424,"passed_time":0.1168623338,"remaining_time":0.1581078634},
429
+ {"learn":[3.952628182],"iteration":425,"passed_time":0.1171487295,"remaining_time":0.1578482881},
430
+ {"learn":[3.949160789],"iteration":426,"passed_time":0.1174212929,"remaining_time":0.1575700254},
431
+ {"learn":[3.945781176],"iteration":427,"passed_time":0.1177130216,"remaining_time":0.1573174027},
432
+ {"learn":[3.943454593],"iteration":428,"passed_time":0.1179846684,"remaining_time":0.1570378687},
433
+ {"learn":[3.939301114],"iteration":429,"passed_time":0.1182469409,"remaining_time":0.156745945},
434
+ {"learn":[3.9373499],"iteration":430,"passed_time":0.1184800906,"remaining_time":0.1564157112},
435
+ {"learn":[3.932516134],"iteration":431,"passed_time":0.1187449879,"remaining_time":0.1561276692},
436
+ {"learn":[3.92842631],"iteration":432,"passed_time":0.1190173013,"remaining_time":0.1558494453},
437
+ {"learn":[3.92657866],"iteration":433,"passed_time":0.1192949893,"remaining_time":0.155578258},
438
+ {"learn":[3.922278344],"iteration":434,"passed_time":0.1195813851,"remaining_time":0.1553183507},
439
+ {"learn":[3.920860587],"iteration":435,"passed_time":0.1198303252,"remaining_time":0.1550098702},
440
+ {"learn":[3.917783045],"iteration":436,"passed_time":0.1200955558,"remaining_time":0.1547226497},
441
+ {"learn":[3.914169768],"iteration":437,"passed_time":0.1203477874,"remaining_time":0.1544188505},
442
+ {"learn":[3.912035],"iteration":438,"passed_time":0.1206289752,"remaining_time":0.1541522894},
443
+ {"learn":[3.905571111],"iteration":439,"passed_time":0.1208747072,"remaining_time":0.1538405364},
444
+ {"learn":[3.90276289],"iteration":440,"passed_time":0.1211338966,"remaining_time":0.153546141},
445
+ {"learn":[3.900306134],"iteration":441,"passed_time":0.1214193341,"remaining_time":0.1532850416},
446
+ {"learn":[3.895991507],"iteration":442,"passed_time":0.1217059798,"remaining_time":0.1530253516},
447
+ {"learn":[3.892639123],"iteration":443,"passed_time":0.1219886258,"remaining_time":0.1527605314},
448
+ {"learn":[3.891188016],"iteration":444,"passed_time":0.122336267,"remaining_time":0.1525766926},
449
+ {"learn":[3.885916341],"iteration":445,"passed_time":0.122583624,"remaining_time":0.1522675509},
450
+ {"learn":[3.882899599],"iteration":446,"passed_time":0.1228685198,"remaining_time":0.1520051263},
451
+ {"learn":[3.87783158],"iteration":447,"passed_time":0.1231540406,"remaining_time":0.1517433715},
452
+ {"learn":[3.875181536],"iteration":448,"passed_time":0.1234071055,"remaining_time":0.1514416817},
453
+ {"learn":[3.869035903],"iteration":449,"passed_time":0.123700209,"remaining_time":0.1511891444},
454
+ {"learn":[3.866716566],"iteration":450,"passed_time":0.1239767305,"remaining_time":0.1509162418},
455
+ {"learn":[3.863131447],"iteration":451,"passed_time":0.1242515854,"remaining_time":0.1506413026},
456
+ {"learn":[3.862380187],"iteration":452,"passed_time":0.1244835268,"remaining_time":0.1503145456},
457
+ {"learn":[3.860271906],"iteration":453,"passed_time":0.1247240925,"remaining_time":0.1499985782},
458
+ {"learn":[3.856522672],"iteration":454,"passed_time":0.1249845318,"remaining_time":0.1497067469},
459
+ {"learn":[3.855160851],"iteration":455,"passed_time":0.1252729691,"remaining_time":0.1494484543},
460
+ {"learn":[3.854193471],"iteration":456,"passed_time":0.1255019107,"remaining_time":0.1491193381},
461
+ {"learn":[3.851968888],"iteration":457,"passed_time":0.1257636416,"remaining_time":0.1488294623},
462
+ {"learn":[3.847181017],"iteration":458,"passed_time":0.1260331219,"remaining_time":0.148548843},
463
+ {"learn":[3.842780767],"iteration":459,"passed_time":0.1265612916,"remaining_time":0.148571951},
464
+ {"learn":[3.841515037],"iteration":460,"passed_time":0.1268725188,"remaining_time":0.1483390188},
465
+ {"learn":[3.837572715],"iteration":461,"passed_time":0.1272613238,"remaining_time":0.148196087},
466
+ {"learn":[3.833847686],"iteration":462,"passed_time":0.1276007156,"remaining_time":0.1479947825},
467
+ {"learn":[3.829554237],"iteration":463,"passed_time":0.1279004437,"remaining_time":0.1477470643},
468
+ {"learn":[3.824694806],"iteration":464,"passed_time":0.1282057547,"remaining_time":0.1475055458},
469
+ {"learn":[3.822882534],"iteration":465,"passed_time":0.1284736518,"remaining_time":0.14722088},
470
+ {"learn":[3.818246428],"iteration":466,"passed_time":0.1287505066,"remaining_time":0.1469465097},
471
+ {"learn":[3.817360199],"iteration":467,"passed_time":0.1290161955,"remaining_time":0.1466594359},
472
+ {"learn":[3.81442954],"iteration":468,"passed_time":0.1292768431,"remaining_time":0.1463667456},
473
+ {"learn":[3.811816601],"iteration":469,"passed_time":0.1295349076,"remaining_time":0.1460712788},
474
+ {"learn":[3.80683768],"iteration":470,"passed_time":0.1297858059,"remaining_time":0.1457679221},
475
+ {"learn":[3.80610564],"iteration":471,"passed_time":0.1300551612,"remaining_time":0.1454854346},
476
+ {"learn":[3.804661571],"iteration":472,"passed_time":0.1303119758,"remaining_time":0.1451890301},
477
+ {"learn":[3.803941927],"iteration":473,"passed_time":0.1305865807,"remaining_time":0.1449125347},
478
+ {"learn":[3.801799028],"iteration":474,"passed_time":0.1308492699,"remaining_time":0.1446228772},
479
+ {"learn":[3.798376585],"iteration":475,"passed_time":0.1310906689,"remaining_time":0.144309896},
480
+ {"learn":[3.794183777],"iteration":476,"passed_time":0.1313338178,"remaining_time":0.1439991335},
481
+ {"learn":[3.79296918],"iteration":477,"passed_time":0.1316018815,"remaining_time":0.1437158622},
482
+ {"learn":[3.789433536],"iteration":478,"passed_time":0.1318469886,"remaining_time":0.1434076849},
483
+ {"learn":[3.786880136],"iteration":479,"passed_time":0.132078305,"remaining_time":0.1430848304},
484
+ {"learn":[3.784456111],"iteration":480,"passed_time":0.1323495352,"remaining_time":0.1428054236},
485
+ {"learn":[3.782507926],"iteration":481,"passed_time":0.1325877261,"remaining_time":0.1424905438},
486
+ {"learn":[3.780285238],"iteration":482,"passed_time":0.1328290002,"remaining_time":0.1421792817},
487
+ {"learn":[3.777418203],"iteration":483,"passed_time":0.1330834816,"remaining_time":0.1418823894},
488
+ {"learn":[3.771566855],"iteration":484,"passed_time":0.133328547,"remaining_time":0.1415756736},
489
+ {"learn":[3.768556284],"iteration":485,"passed_time":0.133596819,"remaining_time":0.1412937551},
490
+ {"learn":[3.765686505],"iteration":486,"passed_time":0.1338864229,"remaining_time":0.1410343633},
491
+ {"learn":[3.76216015],"iteration":487,"passed_time":0.1341820263,"remaining_time":0.1407811423},
492
+ {"learn":[3.76150666],"iteration":488,"passed_time":0.1345066275,"remaining_time":0.1405580505},
493
+ {"learn":[3.75960899],"iteration":489,"passed_time":0.1348104803,"remaining_time":0.1403129489},
494
+ {"learn":[3.758430462],"iteration":490,"passed_time":0.1351377064,"remaining_time":0.1400918382},
495
+ {"learn":[3.753599087],"iteration":491,"passed_time":0.1354051869,"remaining_time":0.1398086076},
496
+ {"learn":[3.750950429],"iteration":492,"passed_time":0.1356880829,"remaining_time":0.1395412941},
497
+ {"learn":[3.749390914],"iteration":493,"passed_time":0.1359399811,"remaining_time":0.1392421669},
498
+ {"learn":[3.746518046],"iteration":494,"passed_time":0.1362235021,"remaining_time":0.138975492},
499
+ {"learn":[3.743886722],"iteration":495,"passed_time":0.1364716089,"remaining_time":0.1386727639},
500
+ {"learn":[3.741298525],"iteration":496,"passed_time":0.1367566714,"remaining_time":0.1384076574},
501
+ {"learn":[3.738798676],"iteration":497,"passed_time":0.1370182773,"remaining_time":0.1381188257},
502
+ {"learn":[3.737880869],"iteration":498,"passed_time":0.137291299,"remaining_time":0.1378415647},
503
+ {"learn":[3.737206978],"iteration":499,"passed_time":0.1375441139,"remaining_time":0.1375441139},
504
+ {"learn":[3.733696747],"iteration":500,"passed_time":0.1378000952,"remaining_time":0.137249995},
505
+ {"learn":[3.731672565],"iteration":501,"passed_time":0.1380636176,"remaining_time":0.1369635091},
506
+ {"learn":[3.729621261],"iteration":502,"passed_time":0.138313766,"remaining_time":0.1366639},
507
+ {"learn":[3.726132522],"iteration":503,"passed_time":0.1385751219,"remaining_time":0.1363755167},
508
+ {"learn":[3.72240354],"iteration":504,"passed_time":0.1388185207,"remaining_time":0.1360696391},
509
+ {"learn":[3.720959851],"iteration":505,"passed_time":0.1390738771,"remaining_time":0.1357756824},
510
+ {"learn":[3.716738656],"iteration":506,"passed_time":0.1393470654,"remaining_time":0.1354992175},
511
+ {"learn":[3.713112762],"iteration":507,"passed_time":0.1395987554,"remaining_time":0.1352019442},
512
+ {"learn":[3.710772899],"iteration":508,"passed_time":0.1398621945,"remaining_time":0.1349161836},
513
+ {"learn":[3.707220715],"iteration":509,"passed_time":0.1401000937,"remaining_time":0.1346059724},
514
+ {"learn":[3.704346456],"iteration":510,"passed_time":0.1403423677,"remaining_time":0.1343002305},
515
+ {"learn":[3.703757073],"iteration":511,"passed_time":0.1406052235,"remaining_time":0.1340143536},
516
+ {"learn":[3.702014274],"iteration":512,"passed_time":0.1408909526,"remaining_time":0.1337502805},
517
+ {"learn":[3.699013563],"iteration":513,"passed_time":0.1411619328,"remaining_time":0.1334721777},
518
+ {"learn":[3.69502317],"iteration":514,"passed_time":0.1413964573,"remaining_time":0.1331597705},
519
+ {"learn":[3.694868559],"iteration":515,"passed_time":0.1416826447,"remaining_time":0.1328961241},
520
+ {"learn":[3.690349059],"iteration":516,"passed_time":0.1419672906,"remaining_time":0.1326309504},
521
+ {"learn":[3.685560511],"iteration":517,"passed_time":0.1422333128,"remaining_time":0.1323483722},
522
+ {"learn":[3.683717968],"iteration":518,"passed_time":0.1424816697,"remaining_time":0.1320494858},
523
+ {"learn":[3.683233632],"iteration":519,"passed_time":0.1427728984,"remaining_time":0.1317903677},
524
+ {"learn":[3.68154876],"iteration":520,"passed_time":0.1430423787,"remaining_time":0.1315111313},
525
+ {"learn":[3.679692547],"iteration":521,"passed_time":0.1433027347,"remaining_time":0.1312235769},
526
+ {"learn":[3.677546274],"iteration":522,"passed_time":0.1435524247,"remaining_time":0.1309263989},
527
+ {"learn":[3.676980821],"iteration":523,"passed_time":0.1438191969,"remaining_time":0.1306449193},
528
+ {"learn":[3.674682929],"iteration":524,"passed_time":0.1441202166,"remaining_time":0.1303944817},
529
+ {"learn":[3.671792959],"iteration":525,"passed_time":0.1444789404,"remaining_time":0.1301958512},
530
+ {"learn":[3.668452908],"iteration":526,"passed_time":0.1447570034,"remaining_time":0.1299242174},
531
+ {"learn":[3.667898809],"iteration":527,"passed_time":0.1450253588,"remaining_time":0.1296438813},
532
+ {"learn":[3.665105737],"iteration":528,"passed_time":0.1452945058,"remaining_time":0.1293642953},
533
+ {"learn":[3.661562249],"iteration":529,"passed_time":0.1455359881,"remaining_time":0.1290602159},
534
+ {"learn":[3.659842899],"iteration":530,"passed_time":0.1457912194,"remaining_time":0.1287685159},
535
+ {"learn":[3.656907886],"iteration":531,"passed_time":0.1461042382,"remaining_time":0.1285277885},
536
+ {"learn":[3.653549224],"iteration":532,"passed_time":0.1463851344,"remaining_time":0.1282586449},
537
+ {"learn":[3.652858346],"iteration":533,"passed_time":0.1466341578,"remaining_time":0.1279616434},
538
+ {"learn":[3.650019408],"iteration":534,"passed_time":0.1469230951,"remaining_time":0.1276995125},
539
+ {"learn":[3.647263907],"iteration":535,"passed_time":0.1473489389,"remaining_time":0.1275557979},
540
+ {"learn":[3.642816299],"iteration":536,"passed_time":0.147684831,"remaining_time":0.1273334763},
541
+ {"learn":[3.638631706],"iteration":537,"passed_time":0.1480578455,"remaining_time":0.1271426108},
542
+ {"learn":[3.637051847],"iteration":538,"passed_time":0.1483674478,"remaining_time":0.1268968339},
543
+ {"learn":[3.6351299],"iteration":539,"passed_time":0.1486370948,"remaining_time":0.1266167844},
544
+ {"learn":[3.633746911],"iteration":540,"passed_time":0.1488953259,"remaining_time":0.126327088},
545
+ {"learn":[3.632064141],"iteration":541,"passed_time":0.1491331419,"remaining_time":0.1260202564},
546
+ {"learn":[3.630192638],"iteration":542,"passed_time":0.1493734576,"remaining_time":0.1257157829},
547
+ {"learn":[3.627103301],"iteration":543,"passed_time":0.1496158982,"remaining_time":0.1254133265},
548
+ {"learn":[3.6259669],"iteration":544,"passed_time":0.1498765459,"remaining_time":0.1251262906},
549
+ {"learn":[3.622567345],"iteration":545,"passed_time":0.1501329854,"remaining_time":0.1248358524},
550
+ {"learn":[3.620517421],"iteration":546,"passed_time":0.1503845504,"remaining_time":0.1245415015},
551
+ {"learn":[3.618905709],"iteration":547,"passed_time":0.15064149,"remaining_time":0.1242517399},
552
+ {"learn":[3.616304574],"iteration":548,"passed_time":0.1508995128,"remaining_time":0.1239629877},
553
+ {"learn":[3.615505304],"iteration":549,"passed_time":0.1511408701,"remaining_time":0.1236607119},
554
+ {"learn":[3.614911264],"iteration":550,"passed_time":0.1513631872,"remaining_time":0.1233431417},
555
+ {"learn":[3.613401152],"iteration":551,"passed_time":0.1516176686,"remaining_time":0.1230520209},
556
+ {"learn":[3.608273545],"iteration":552,"passed_time":0.1518704835,"remaining_time":0.1227596855},
557
+ {"learn":[3.605438286],"iteration":553,"passed_time":0.1521557126,"remaining_time":0.1224935881},
558
+ {"learn":[3.605057936],"iteration":554,"passed_time":0.1523904455,"remaining_time":0.1221869337},
559
+ {"learn":[3.602876754],"iteration":555,"passed_time":0.1526581759,"remaining_time":0.1219068887},
560
+ {"learn":[3.598734026],"iteration":556,"passed_time":0.1529013664,"remaining_time":0.1216073704},
561
+ {"learn":[3.598578177],"iteration":557,"passed_time":0.1531768463,"remaining_time":0.121333631},
562
+ {"learn":[3.597333538],"iteration":558,"passed_time":0.1534486181,"remaining_time":0.1210569599},
563
+ {"learn":[3.59438103],"iteration":559,"passed_time":0.1537256812,"remaining_time":0.1207844638},
564
+ {"learn":[3.591606014],"iteration":560,"passed_time":0.1539676635,"remaining_time":0.1204844996},
565
+ {"learn":[3.589148369],"iteration":561,"passed_time":0.1542107707,"remaining_time":0.1201856185},
566
+ {"learn":[3.585314533],"iteration":562,"passed_time":0.1544846674,"remaining_time":0.1199108342},
567
+ {"learn":[3.58431424],"iteration":563,"passed_time":0.1547664801,"remaining_time":0.1196421726},
568
+ {"learn":[3.580886967],"iteration":564,"passed_time":0.1550075458,"remaining_time":0.1193420928},
569
+ {"learn":[3.57693869],"iteration":565,"passed_time":0.1552539028,"remaining_time":0.1190462789},
570
+ {"learn":[3.572514079],"iteration":566,"passed_time":0.1554871358,"remaining_time":0.1187406169},
571
+ {"learn":[3.569804685],"iteration":567,"passed_time":0.1557247434,"remaining_time":0.1184385373},
572
+ {"learn":[3.566717871],"iteration":568,"passed_time":0.156004598,"remaining_time":0.1181686849},
573
+ {"learn":[3.565756044],"iteration":569,"passed_time":0.1562715368,"remaining_time":0.1178890541},
574
+ {"learn":[3.562943265],"iteration":570,"passed_time":0.1565493498,"remaining_time":0.1176176376},
575
+ {"learn":[3.562261954],"iteration":571,"passed_time":0.1568376621,"remaining_time":0.1173540548},
576
+ {"learn":[3.558620521],"iteration":572,"passed_time":0.1570927684,"remaining_time":0.1170656407},
577
+ {"learn":[3.556312366],"iteration":573,"passed_time":0.1573513745,"remaining_time":0.11677994},
578
+ {"learn":[3.552650431],"iteration":574,"passed_time":0.1576085224,"remaining_time":0.1164932557},
579
+ {"learn":[3.549624074],"iteration":575,"passed_time":0.1578610456,"remaining_time":0.1162032697},
580
+ {"learn":[3.548030903],"iteration":576,"passed_time":0.15812011,"remaining_time":0.1159182089},
581
+ {"learn":[3.545652556],"iteration":577,"passed_time":0.1583861739,"remaining_time":0.1156383484},
582
+ {"learn":[3.54354168],"iteration":578,"passed_time":0.1586708614,"remaining_time":0.1153720771},
583
+ {"learn":[3.541285497],"iteration":579,"passed_time":0.1589160935,"remaining_time":0.1150771712},
584
+ {"learn":[3.541040864],"iteration":580,"passed_time":0.1591694917,"remaining_time":0.1147883253},
585
+ {"learn":[3.540046172],"iteration":581,"passed_time":0.1594387636,"remaining_time":0.1145110021},
586
+ {"learn":[3.538673948],"iteration":582,"passed_time":0.1597080356,"remaining_time":0.1142337064},
587
+ {"learn":[3.536688077],"iteration":583,"passed_time":0.160049969,"remaining_time":0.1140081971},
588
+ {"learn":[3.536460552],"iteration":584,"passed_time":0.1603434059,"remaining_time":0.1137478862},
589
+ {"learn":[3.531786897],"iteration":585,"passed_time":0.1606421757,"remaining_time":0.1134912299},
590
+ {"learn":[3.530392627],"iteration":586,"passed_time":0.1609156557,"remaining_time":0.1132166368},
591
+ {"learn":[3.528537284],"iteration":587,"passed_time":0.1611844694,"remaining_time":0.1129387779},
592
+ {"learn":[3.527142596],"iteration":588,"passed_time":0.161413286,"remaining_time":0.11263304},
593
+ {"learn":[3.525846813],"iteration":589,"passed_time":0.1616625594,"remaining_time":0.1123417786},
594
+ {"learn":[3.521671099],"iteration":590,"passed_time":0.1619143327,"remaining_time":0.1120523893},
595
+ {"learn":[3.51683812],"iteration":591,"passed_time":0.1621858545,"remaining_time":0.1117767376},
596
+ {"learn":[3.514255728],"iteration":592,"passed_time":0.1624615011,"remaining_time":0.1115039307},
597
+ {"learn":[3.511784707],"iteration":593,"passed_time":0.1627095246,"remaining_time":0.111212234},
598
+ {"learn":[3.509387145],"iteration":594,"passed_time":0.1629734636,"remaining_time":0.1109315173},
599
+ {"learn":[3.505752576],"iteration":595,"passed_time":0.1632331113,"remaining_time":0.1106479479},
600
+ {"learn":[3.502425777],"iteration":596,"passed_time":0.1634636778,"remaining_time":0.1103448277},
601
+ {"learn":[3.501829797],"iteration":597,"passed_time":0.1637081183,"remaining_time":0.1100512768},
602
+ {"learn":[3.501128686],"iteration":598,"passed_time":0.1639364349,"remaining_time":0.1097470958},
603
+ {"learn":[3.498561083],"iteration":599,"passed_time":0.1641795005,"remaining_time":0.1094530003},
604
+ {"learn":[3.49674858],"iteration":600,"passed_time":0.1644398565,"remaining_time":0.1091705536},
605
+ {"learn":[3.494986319],"iteration":601,"passed_time":0.1647000458,"remaining_time":0.1088880701},
606
+ {"learn":[3.489345323],"iteration":602,"passed_time":0.1649502358,"remaining_time":0.1085990773},
607
+ {"learn":[3.487535254],"iteration":603,"passed_time":0.1652220493,"remaining_time":0.1083243899},
608
+ {"learn":[3.484670982],"iteration":604,"passed_time":0.1654714894,"remaining_time":0.1080351046},
609
+ {"learn":[3.482935189],"iteration":605,"passed_time":0.1657179297,"remaining_time":0.1077440005},
610
+ {"learn":[3.477965291],"iteration":606,"passed_time":0.1659579122,"remaining_time":0.1074488624},
611
+ {"learn":[3.475706273],"iteration":607,"passed_time":0.1661993529,"remaining_time":0.1071548459},
612
+ {"learn":[3.473977153],"iteration":608,"passed_time":0.1664686248,"remaining_time":0.1068788708},
613
+ {"learn":[3.471471165],"iteration":609,"passed_time":0.1667063158,"remaining_time":0.1065827265},
614
+ {"learn":[3.468174774],"iteration":610,"passed_time":0.1669652969,"remaining_time":0.1063003281},
615
+ {"learn":[3.465040129],"iteration":611,"passed_time":0.1672184034,"remaining_time":0.1060142819},
616
+ {"learn":[3.463263022],"iteration":612,"passed_time":0.1675002578,"remaining_time":0.1057464923},
617
+ {"learn":[3.458996797],"iteration":613,"passed_time":0.167775071,"remaining_time":0.1054742303},
618
+ {"learn":[3.457404176],"iteration":614,"passed_time":0.1680229279,"remaining_time":0.105185085},
619
+ {"learn":[3.456072755],"iteration":615,"passed_time":0.1682720764,"remaining_time":0.1048968788},
620
+ {"learn":[3.455877599],"iteration":616,"passed_time":0.168523058,"remaining_time":0.1046099372},
621
+ {"learn":[3.455266129],"iteration":617,"passed_time":0.16879308,"remaining_time":0.1043348811},
622
+ {"learn":[3.45389987],"iteration":618,"passed_time":0.1690741844,"remaining_time":0.1040666628},
623
+ {"learn":[3.451221379],"iteration":619,"passed_time":0.1693752874,"remaining_time":0.10381066},
624
+ {"learn":[3.447640917],"iteration":620,"passed_time":0.1695997293,"remaining_time":0.1035077253},
625
+ {"learn":[3.442378301],"iteration":621,"passed_time":0.1699042487,"remaining_time":0.1032537074},
626
+ {"learn":[3.44218612],"iteration":622,"passed_time":0.170138315,"remaining_time":0.1029568937},
627
+ {"learn":[3.440192513],"iteration":623,"passed_time":0.1703987126,"remaining_time":0.1026761473},
628
+ {"learn":[3.440072845],"iteration":624,"passed_time":0.1706443197,"remaining_time":0.1023865918},
629
+ {"learn":[3.435895763],"iteration":625,"passed_time":0.1709474642,"remaining_time":0.1021315521},
630
+ {"learn":[3.431952441],"iteration":626,"passed_time":0.1712267771,"remaining_time":0.1018621816},
631
+ {"learn":[3.427752417],"iteration":627,"passed_time":0.1714797169,"remaining_time":0.1015771572},
632
+ {"learn":[3.425946666],"iteration":628,"passed_time":0.1717753203,"remaining_time":0.1013173988},
633
+ {"learn":[3.424369975],"iteration":629,"passed_time":0.172039426,"remaining_time":0.101039028},
634
+ {"learn":[3.42177517],"iteration":630,"passed_time":0.1723607775,"remaining_time":0.1007941789},
635
+ {"learn":[3.421154121],"iteration":631,"passed_time":0.1727543321,"remaining_time":0.1005911301},
636
+ {"learn":[3.418341522],"iteration":632,"passed_time":0.1731705517,"remaining_time":0.10040062},
637
+ {"learn":[3.414231029],"iteration":633,"passed_time":0.1734956529,"remaining_time":0.1001567965},
638
+ {"learn":[3.412541223],"iteration":634,"passed_time":0.1738021305,"remaining_time":0.09990201203},
639
+ {"learn":[3.407815061],"iteration":635,"passed_time":0.1740786103,"remaining_time":0.09962989647},
640
+ {"learn":[3.406636415],"iteration":636,"passed_time":0.174334425,"remaining_time":0.09934599099},
641
+ {"learn":[3.405530018],"iteration":637,"passed_time":0.1745909062,"remaining_time":0.0990625518},
642
+ {"learn":[3.403613125],"iteration":638,"passed_time":0.17492609,"remaining_time":0.09882365963},
643
+ {"learn":[3.401252937],"iteration":639,"passed_time":0.1751937788,"remaining_time":0.09854650058},
644
+ {"learn":[3.400238857],"iteration":640,"passed_time":0.1755137554,"remaining_time":0.09829865554},
645
+ {"learn":[3.397564431],"iteration":641,"passed_time":0.1757521963,"remaining_time":0.09800511883},
646
+ {"learn":[3.394172752],"iteration":642,"passed_time":0.1760065111,"remaining_time":0.0977205668},
647
+ {"learn":[3.392867571],"iteration":643,"passed_time":0.1762547846,"remaining_time":0.09743276913},
648
+ {"learn":[3.390328772],"iteration":644,"passed_time":0.1765182237,"remaining_time":0.09715344094},
649
+ {"learn":[3.388954273],"iteration":645,"passed_time":0.1767727884,"remaining_time":0.09686929891},
650
+ {"learn":[3.384479935],"iteration":646,"passed_time":0.1770181455,"remaining_time":0.09658022466},
651
+ {"learn":[3.38216728],"iteration":647,"passed_time":0.1773099991,"remaining_time":0.09631654274},
652
+ {"learn":[3.381662368],"iteration":648,"passed_time":0.1776521825,"remaining_time":0.09607999391},
653
+ {"learn":[3.377650444],"iteration":649,"passed_time":0.1779290372,"remaining_time":0.09580794313},
654
+ {"learn":[3.375634858],"iteration":650,"passed_time":0.1782473473,"remaining_time":0.0955581017},
655
+ {"learn":[3.373992874],"iteration":651,"passed_time":0.1785213273,"remaining_time":0.09528438941},
656
+ {"learn":[3.371881665],"iteration":652,"passed_time":0.1787970571,"remaining_time":0.09501160616},
657
+ {"learn":[3.370229532],"iteration":653,"passed_time":0.1790541217,"remaining_time":0.09472893899},
658
+ {"learn":[3.369786873],"iteration":654,"passed_time":0.1793203522,"remaining_time":0.09445117788},
659
+ {"learn":[3.366852834],"iteration":655,"passed_time":0.1795629178,"remaining_time":0.09416104227},
660
+ {"learn":[3.366277675],"iteration":656,"passed_time":0.1798001088,"remaining_time":0.09386824554},
661
+ {"learn":[3.36215115],"iteration":657,"passed_time":0.1800648395,"remaining_time":0.09358993176},
662
+ {"learn":[3.35848276],"iteration":658,"passed_time":0.1803306534,"remaining_time":0.09331221973},
663
+ {"learn":[3.357310773],"iteration":659,"passed_time":0.1805738439,"remaining_time":0.0930228893},
664
+ {"learn":[3.355572128],"iteration":660,"passed_time":0.1808349915,"remaining_time":0.0927429079},
665
+ {"learn":[3.351763408],"iteration":661,"passed_time":0.1810803486,"remaining_time":0.09245492118},
666
+ {"learn":[3.349560592],"iteration":662,"passed_time":0.1813224142,"remaining_time":0.09216539003},
667
+ {"learn":[3.347879941],"iteration":663,"passed_time":0.1815782705,"remaining_time":0.09188298026},
668
+ {"learn":[3.345562727],"iteration":664,"passed_time":0.1818295022,"remaining_time":0.09159832063},
669
+ {"learn":[3.343774819],"iteration":665,"passed_time":0.1821116482,"remaining_time":0.09132926501},
670
+ {"learn":[3.341550721],"iteration":666,"passed_time":0.1823933776,"remaining_time":0.09105996214},
671
+ {"learn":[3.34111087],"iteration":667,"passed_time":0.182643401,"remaining_time":0.09077486397},
672
+ {"learn":[3.336335693],"iteration":668,"passed_time":0.1829232972,"remaining_time":0.09050465079},
673
+ {"learn":[3.334831254],"iteration":669,"passed_time":0.1832838959,"remaining_time":0.09027415766},
674
+ {"learn":[3.332600659],"iteration":670,"passed_time":0.1836186631,"remaining_time":0.09003061125},
675
+ {"learn":[3.330188435],"iteration":671,"passed_time":0.183916433,"remaining_time":0.08976873514},
676
+ {"learn":[3.327622588],"iteration":672,"passed_time":0.1843196535,"remaining_time":0.08955798914},
677
+ {"learn":[3.326808514],"iteration":673,"passed_time":0.1845906753,"remaining_time":0.08928273021},
678
+ {"learn":[3.325759602],"iteration":674,"passed_time":0.1848941532,"remaining_time":0.08902311078},
679
+ {"learn":[3.323188464],"iteration":675,"passed_time":0.1852019223,"remaining_time":0.0887654184},
680
+ {"learn":[3.322151729],"iteration":676,"passed_time":0.1854541539,"remaining_time":0.08848108081},
681
+ {"learn":[3.319917095],"iteration":677,"passed_time":0.1857348834,"remaining_time":0.08821037235},
682
+ {"learn":[3.316481419],"iteration":678,"passed_time":0.185986865,"remaining_time":0.08792604368},
683
+ {"learn":[3.313542367],"iteration":679,"passed_time":0.1862373467,"remaining_time":0.08764110431},
684
+ {"learn":[3.311914229],"iteration":680,"passed_time":0.1864778291,"remaining_time":0.0873515822},
685
+ {"learn":[3.309325434],"iteration":681,"passed_time":0.1867317689,"remaining_time":0.08706847874},
686
+ {"learn":[3.307859041],"iteration":682,"passed_time":0.1869760427,"remaining_time":0.08678097442},
687
+ {"learn":[3.305235954],"iteration":683,"passed_time":0.1872248995,"remaining_time":0.0864957138},
688
+ {"learn":[3.304519664],"iteration":684,"passed_time":0.1874639653,"remaining_time":0.08620605706},
689
+ {"learn":[3.302969116],"iteration":685,"passed_time":0.1877061143,"remaining_time":0.08591795903},
690
+ {"learn":[3.301715774],"iteration":686,"passed_time":0.1879740947,"remaining_time":0.08564176368},
691
+ {"learn":[3.298466729],"iteration":687,"passed_time":0.1882302427,"remaining_time":0.08536022633},
692
+ {"learn":[3.295793921],"iteration":688,"passed_time":0.1884765163,"remaining_time":0.08507430563},
693
+ {"learn":[3.293524766],"iteration":689,"passed_time":0.1887156655,"remaining_time":0.08478529901},
694
+ {"learn":[3.292126108],"iteration":690,"passed_time":0.1889477319,"remaining_time":0.0844932694},
695
+ {"learn":[3.2910686],"iteration":691,"passed_time":0.1892243783,"remaining_time":0.0842212551},
696
+ {"learn":[3.289983527],"iteration":692,"passed_time":0.1894786098,"remaining_time":0.08393929754},
697
+ {"learn":[3.287861103],"iteration":693,"passed_time":0.1897372575,"remaining_time":0.08365936715},
698
+ {"learn":[3.284661373],"iteration":694,"passed_time":0.1899738652,"remaining_time":0.08336982575},
699
+ {"learn":[3.284110841],"iteration":695,"passed_time":0.190228555,"remaining_time":0.08308833435},
700
+ {"learn":[3.280737676],"iteration":696,"passed_time":0.1904873277,"remaining_time":0.08280869483},
701
+ {"learn":[3.279361259],"iteration":697,"passed_time":0.1907205607,"remaining_time":0.08251806493},
702
+ {"learn":[3.278135159],"iteration":698,"passed_time":0.190984708,"remaining_time":0.08224091147},
703
+ {"learn":[3.277954816],"iteration":699,"passed_time":0.1912369396,"remaining_time":0.08195868839},
704
+ {"learn":[3.27610216],"iteration":700,"passed_time":0.1915105029,"remaining_time":0.08168564961},
705
+ {"learn":[3.272329641],"iteration":701,"passed_time":0.1917938156,"remaining_time":0.08141674791},
706
+ {"learn":[3.27131915],"iteration":702,"passed_time":0.1921422068,"remaining_time":0.0811752993},
707
+ {"learn":[3.269162799],"iteration":703,"passed_time":0.192389147,"remaining_time":0.08089089137},
708
+ {"learn":[3.267346565],"iteration":704,"passed_time":0.1926643769,"remaining_time":0.08061842722},
709
+ {"learn":[3.265084188],"iteration":705,"passed_time":0.1929134421,"remaining_time":0.08033505944},
710
+ {"learn":[3.262633719],"iteration":706,"passed_time":0.1931662569,"remaining_time":0.08005334268},
711
+ {"learn":[3.26039277],"iteration":707,"passed_time":0.1934142388,"remaining_time":0.0797697143},
712
+ {"learn":[3.25944478],"iteration":708,"passed_time":0.1936617624,"remaining_time":0.07948599837},
713
+ {"learn":[3.256763583],"iteration":709,"passed_time":0.1939214517,"remaining_time":0.07920735352},
714
+ {"learn":[3.253034101],"iteration":710,"passed_time":0.1941779746,"remaining_time":0.07892747492},
715
+ {"learn":[3.251299357],"iteration":711,"passed_time":0.1944383723,"remaining_time":0.07864922923},
716
+ {"learn":[3.249482076],"iteration":712,"passed_time":0.1946846876,"remaining_time":0.07836536513},
717
+ {"learn":[3.247016043],"iteration":713,"passed_time":0.1949295864,"remaining_time":0.0780810388},
718
+ {"learn":[3.244137954],"iteration":714,"passed_time":0.1951750684,"remaining_time":0.07779705525},
719
+ {"learn":[3.241949551],"iteration":715,"passed_time":0.1954274666,"remaining_time":0.07751592252},
720
+ {"learn":[3.240514141],"iteration":716,"passed_time":0.1956704905,"remaining_time":0.07723116991},
721
+ {"learn":[3.240167475],"iteration":717,"passed_time":0.1959313881,"remaining_time":0.07695355356},
722
+ {"learn":[3.239795766],"iteration":718,"passed_time":0.1962369491,"remaining_time":0.0766934391},
723
+ {"learn":[3.239078748],"iteration":719,"passed_time":0.1965719247,"remaining_time":0.07644463737},
724
+ {"learn":[3.237043601],"iteration":720,"passed_time":0.196823323,"remaining_time":0.07616325535},
725
+ {"learn":[3.235089212],"iteration":721,"passed_time":0.1971407998,"remaining_time":0.07590739935},
726
+ {"learn":[3.23329073],"iteration":722,"passed_time":0.1974438193,"remaining_time":0.07564583394},
727
+ {"learn":[3.231367482],"iteration":723,"passed_time":0.1976859682,"remaining_time":0.07536094922},
728
+ {"learn":[3.227681517],"iteration":724,"passed_time":0.1979734889,"remaining_time":0.07509339234},
729
+ {"learn":[3.226541552],"iteration":725,"passed_time":0.1982267621,"remaining_time":0.0748128551},
730
+ {"learn":[3.224455704],"iteration":726,"passed_time":0.1985057833,"remaining_time":0.07454206169},
731
+ {"learn":[3.222932416],"iteration":727,"passed_time":0.1987636811,"remaining_time":0.07426335339},
732
+ {"learn":[3.221539739],"iteration":728,"passed_time":0.1990748667,"remaining_time":0.0740045115},
733
+ {"learn":[3.219408509],"iteration":729,"passed_time":0.1994971692,"remaining_time":0.07378662422},
734
+ {"learn":[3.217330855],"iteration":730,"passed_time":0.1998078548,"remaining_time":0.0735271039},
735
+ {"learn":[3.216543018],"iteration":731,"passed_time":0.2000956255,"remaining_time":0.07325905413},
736
+ {"learn":[3.214125656],"iteration":732,"passed_time":0.2003979367,"remaining_time":0.07299624706},
737
+ {"learn":[3.210439089],"iteration":733,"passed_time":0.2007218297,"remaining_time":0.07274115354},
738
+ {"learn":[3.209133078],"iteration":734,"passed_time":0.2010815534,"remaining_time":0.07249879136},
739
+ {"learn":[3.205535269],"iteration":735,"passed_time":0.201378615,"remaining_time":0.07223363365},
740
+ {"learn":[3.205017565],"iteration":736,"passed_time":0.2016549282,"remaining_time":0.07196098522},
741
+ {"learn":[3.204216294],"iteration":737,"passed_time":0.2019303664,"remaining_time":0.07168801624},
742
+ {"learn":[3.203268489],"iteration":738,"passed_time":0.2021801398,"remaining_time":0.07140597629},
743
+ {"learn":[3.201320763],"iteration":739,"passed_time":0.2024607443,"remaining_time":0.07113485609},
744
+ {"learn":[3.198641809],"iteration":740,"passed_time":0.202719517,"remaining_time":0.0708560795},
745
+ {"learn":[3.197657086],"iteration":741,"passed_time":0.2029753317,"remaining_time":0.07057632826},
746
+ {"learn":[3.196859589],"iteration":742,"passed_time":0.2032389791,"remaining_time":0.07029935076},
747
+ {"learn":[3.193632322],"iteration":743,"passed_time":0.203472587,"remaining_time":0.07001207294},
748
+ {"learn":[3.191819714],"iteration":744,"passed_time":0.2037095697,"remaining_time":0.06972609431},
749
+ {"learn":[3.18880024],"iteration":745,"passed_time":0.2039585515,"remaining_time":0.06944433253},
750
+ {"learn":[3.188359008],"iteration":746,"passed_time":0.2042079082,"remaining_time":0.06916278552},
751
+ {"learn":[3.184816327],"iteration":747,"passed_time":0.2044725139,"remaining_time":0.0688864619},
752
+ {"learn":[3.184395914],"iteration":748,"passed_time":0.2047355363,"remaining_time":0.06860963901},
753
+ {"learn":[3.182592815],"iteration":749,"passed_time":0.2049687693,"remaining_time":0.0683229231},
754
+ {"learn":[3.1804873],"iteration":750,"passed_time":0.2052273337,"remaining_time":0.06804474847},
755
+ {"learn":[3.17924186],"iteration":751,"passed_time":0.2055034385,"remaining_time":0.06777241058},
756
+ {"learn":[3.177390352],"iteration":752,"passed_time":0.2057556284,"remaining_time":0.0674922181},
757
+ {"learn":[3.1734988],"iteration":753,"passed_time":0.2060766883,"remaining_time":0.0672345694},
758
+ {"learn":[3.170512768],"iteration":754,"passed_time":0.2063703752,"remaining_time":0.06696787009},
759
+ {"learn":[3.170234006],"iteration":755,"passed_time":0.2066753946,"remaining_time":0.06670475697},
760
+ {"learn":[3.166443113],"iteration":756,"passed_time":0.2069368338,"remaining_time":0.06642754374},
761
+ {"learn":[3.162939437],"iteration":757,"passed_time":0.2072636849,"remaining_time":0.0661712556},
762
+ {"learn":[3.161215141],"iteration":758,"passed_time":0.2074982927,"remaining_time":0.06588549216},
763
+ {"learn":[3.160326858],"iteration":759,"passed_time":0.2077384419,"remaining_time":0.06560161322},
764
+ {"learn":[3.158631997],"iteration":760,"passed_time":0.2079838823,"remaining_time":0.06531951098},
765
+ {"learn":[3.156861667],"iteration":761,"passed_time":0.208228656,"remaining_time":0.06503729677},
766
+ {"learn":[3.153425432],"iteration":762,"passed_time":0.2084893453,"remaining_time":0.0647601243},
767
+ {"learn":[3.153058104],"iteration":763,"passed_time":0.2087699498,"remaining_time":0.0644891468},
768
+ {"learn":[3.152706573],"iteration":764,"passed_time":0.2090796355,"remaining_time":0.06422707757},
769
+ {"learn":[3.151708195],"iteration":765,"passed_time":0.2093988622,"remaining_time":0.06396779863},
770
+ {"learn":[3.149196934],"iteration":766,"passed_time":0.2096838413,"remaining_time":0.06369795963},
771
+ {"learn":[3.14744296],"iteration":767,"passed_time":0.2099465721,"remaining_time":0.06342136033},
772
+ {"learn":[3.144567235],"iteration":768,"passed_time":0.2102174273,"remaining_time":0.0631472376},
773
+ {"learn":[3.144201196],"iteration":769,"passed_time":0.2104853661,"remaining_time":0.06287225221},
774
+ {"learn":[3.141561568],"iteration":770,"passed_time":0.2107419723,"remaining_time":0.06259391915},
775
+ {"learn":[3.140240019],"iteration":771,"passed_time":0.2110066613,"remaining_time":0.06231802951},
776
+ {"learn":[3.139120379],"iteration":772,"passed_time":0.2112900156,"remaining_time":0.06204765012},
777
+ {"learn":[3.137913514],"iteration":773,"passed_time":0.2115646205,"remaining_time":0.06177468249},
778
+ {"learn":[3.135460068],"iteration":774,"passed_time":0.2118468083,"remaining_time":0.06150391207},
779
+ {"learn":[3.131749051],"iteration":775,"passed_time":0.2121277877,"remaining_time":0.06123276347},
780
+ {"learn":[3.131605657],"iteration":776,"passed_time":0.2124001012,"remaining_time":0.06095910239},
781
+ {"learn":[3.129546631],"iteration":777,"passed_time":0.2126636236,"remaining_time":0.06068293629},
782
+ {"learn":[3.128479703],"iteration":778,"passed_time":0.2129066058,"remaining_time":0.06040097546},
783
+ {"learn":[3.127247256],"iteration":779,"passed_time":0.2131533794,"remaining_time":0.06012018394},
784
+ {"learn":[3.124002329],"iteration":780,"passed_time":0.2134433582,"remaining_time":0.05985159469},
785
+ {"learn":[3.120759648],"iteration":781,"passed_time":0.2137203797,"remaining_time":0.05957933857},
786
+ {"learn":[3.118202743],"iteration":782,"passed_time":0.2139576956,"remaining_time":0.05929606635},
787
+ {"learn":[3.116266087],"iteration":783,"passed_time":0.214208344,"remaining_time":0.05901658457},
788
+ {"learn":[3.113243018],"iteration":784,"passed_time":0.2144673251,"remaining_time":0.05873945846},
789
+ {"learn":[3.11123961],"iteration":785,"passed_time":0.2147636367,"remaining_time":0.05847254232},
790
+ {"learn":[3.111099336],"iteration":786,"passed_time":0.2150114936,"remaining_time":0.05819243728},
791
+ {"learn":[3.109735715],"iteration":787,"passed_time":0.2152735578,"remaining_time":0.05791623636},
792
+ {"learn":[3.109605615],"iteration":788,"passed_time":0.2155431214,"remaining_time":0.05764207684},
793
+ {"learn":[3.109470805],"iteration":789,"passed_time":0.2158108102,"remaining_time":0.05736743056},
794
+ {"learn":[3.105981983],"iteration":790,"passed_time":0.2160769158,"remaining_time":0.05709238356},
795
+ {"learn":[3.105857741],"iteration":791,"passed_time":0.2163404798,"remaining_time":0.05681669167},
796
+ {"learn":[3.103965487],"iteration":792,"passed_time":0.2165897116,"remaining_time":0.05653728916},
797
+ {"learn":[3.103126748],"iteration":793,"passed_time":0.2168310273,"remaining_time":0.05625590885},
798
+ {"learn":[3.100509776],"iteration":794,"passed_time":0.2170763844,"remaining_time":0.05597567144},
799
+ {"learn":[3.098582059],"iteration":795,"passed_time":0.2173201166,"remaining_time":0.05569510525},
800
+ {"learn":[3.095159514],"iteration":796,"passed_time":0.2175649737,"remaining_time":0.05541491801},
801
+ {"learn":[3.092884158],"iteration":797,"passed_time":0.2178189551,"remaining_time":0.05513712899},
802
+ {"learn":[3.092084728],"iteration":798,"passed_time":0.218057896,"remaining_time":0.05485561588},
803
+ {"learn":[3.09092394],"iteration":799,"passed_time":0.2183014615,"remaining_time":0.05457536538},
804
+ {"learn":[3.087543022],"iteration":800,"passed_time":0.2185425689,"remaining_time":0.05429459576},
805
+ {"learn":[3.086141632],"iteration":801,"passed_time":0.2187620112,"remaining_time":0.05400857632},
806
+ {"learn":[3.085009846],"iteration":802,"passed_time":0.2190084098,"remaining_time":0.05372933591},
807
+ {"learn":[3.08399208],"iteration":803,"passed_time":0.2192458925,"remaining_time":0.05344800364},
808
+ {"learn":[3.082886622],"iteration":804,"passed_time":0.2195166227,"remaining_time":0.05317483407},
809
+ {"learn":[3.081513499],"iteration":805,"passed_time":0.2197535637,"remaining_time":0.05289353767},
810
+ {"learn":[3.080462847],"iteration":806,"passed_time":0.220027502,"remaining_time":0.05262119937},
811
+ {"learn":[3.078298122],"iteration":807,"passed_time":0.2202691927,"remaining_time":0.0523411943},
812
+ {"learn":[3.07800503],"iteration":808,"passed_time":0.2205217576,"remaining_time":0.05206385129},
813
+ {"learn":[3.075343185],"iteration":809,"passed_time":0.2207608651,"remaining_time":0.0517834128},
814
+ {"learn":[3.072361329],"iteration":810,"passed_time":0.2211105062,"remaining_time":0.0515288356},
815
+ {"learn":[3.068298017],"iteration":811,"passed_time":0.2213816114,"remaining_time":0.05125584106},
816
+ {"learn":[3.065872601],"iteration":812,"passed_time":0.2216247603,"remaining_time":0.05097642088},
817
+ {"learn":[3.064302869],"iteration":813,"passed_time":0.2218835747,"remaining_time":0.0507006694},
818
+ {"learn":[3.06334264],"iteration":814,"passed_time":0.2221325982,"remaining_time":0.05042273701},
819
+ {"learn":[3.060995132],"iteration":815,"passed_time":0.2224184523,"remaining_time":0.05015318041},
820
+ {"learn":[3.059938426],"iteration":816,"passed_time":0.222695432,"remaining_time":0.04988159616},
821
+ {"learn":[3.059089581],"iteration":817,"passed_time":0.2230735711,"remaining_time":0.04963250603},
822
+ {"learn":[3.056908935],"iteration":818,"passed_time":0.2234762083,"remaining_time":0.0493885149},
823
+ {"learn":[3.056700767],"iteration":819,"passed_time":0.2237665621,"remaining_time":0.04911948923},
824
+ {"learn":[3.054709241],"iteration":820,"passed_time":0.2240737896,"remaining_time":0.04885409055},
825
+ {"learn":[3.052917049],"iteration":821,"passed_time":0.2243729761,"remaining_time":0.04858684884},
826
+ {"learn":[3.049822553],"iteration":822,"passed_time":0.2246716209,"remaining_time":0.048319413},
827
+ {"learn":[3.048732235],"iteration":823,"passed_time":0.2249458509,"remaining_time":0.0480466866},
828
+ {"learn":[3.045954242],"iteration":824,"passed_time":0.2252111232,"remaining_time":0.04777205643},
829
+ {"learn":[3.044353362],"iteration":825,"passed_time":0.2255093097,"remaining_time":0.04750438243},
830
+ {"learn":[3.04191027],"iteration":826,"passed_time":0.2257763735,"remaining_time":0.04723012408},
831
+ {"learn":[3.038685052],"iteration":827,"passed_time":0.2260319382,"remaining_time":0.0469534944},
832
+ {"learn":[3.036088723],"iteration":828,"passed_time":0.2262976271,"remaining_time":0.0466790039},
833
+ {"learn":[3.033604082],"iteration":829,"passed_time":0.2265805647,"remaining_time":0.04640806748},
834
+ {"learn":[3.031878229],"iteration":830,"passed_time":0.2268538364,"remaining_time":0.04613513641},
835
+ {"learn":[3.030208492],"iteration":831,"passed_time":0.227133316,"remaining_time":0.04586345804},
836
+ {"learn":[3.027358833],"iteration":832,"passed_time":0.2273862142,"remaining_time":0.0455864319},
837
+ {"learn":[3.024352682],"iteration":833,"passed_time":0.2276279465,"remaining_time":0.04530724115},
838
+ {"learn":[3.022708034],"iteration":834,"passed_time":0.2278687622,"remaining_time":0.04502795901},
839
+ {"learn":[3.022581443],"iteration":835,"passed_time":0.228114286,"remaining_time":0.04474969246},
840
+ {"learn":[3.021922533],"iteration":836,"passed_time":0.2283568099,"remaining_time":0.04447091997},
841
+ {"learn":[3.020700594],"iteration":837,"passed_time":0.2286068333,"remaining_time":0.04419368377},
842
+ {"learn":[3.017346899],"iteration":838,"passed_time":0.2288753137,"remaining_time":0.04392005423},
843
+ {"learn":[3.016494297],"iteration":839,"passed_time":0.2291341281,"remaining_time":0.04364459583},
844
+ {"learn":[3.015289067],"iteration":840,"passed_time":0.2294218571,"remaining_time":0.04337464361},
845
+ {"learn":[3.015173678],"iteration":841,"passed_time":0.2296675058,"remaining_time":0.04309675287},
846
+ {"learn":[3.012899925],"iteration":842,"passed_time":0.2299347779,"remaining_time":0.04282296576},
847
+ {"learn":[3.010260643],"iteration":843,"passed_time":0.2302151741,"remaining_time":0.04255161986},
848
+ {"learn":[3.009871447],"iteration":844,"passed_time":0.2304831962,"remaining_time":0.04227798273},
849
+ {"learn":[3.008202216],"iteration":845,"passed_time":0.2307398857,"remaining_time":0.04200229599},
850
+ {"learn":[3.005137876],"iteration":846,"passed_time":0.2309902841,"remaining_time":0.04172551767},
851
+ {"learn":[3.003370225],"iteration":847,"passed_time":0.2312483486,"remaining_time":0.04145017569},
852
+ {"learn":[3.002052017],"iteration":848,"passed_time":0.2315149541,"remaining_time":0.04117639348},
853
+ {"learn":[3.000543323],"iteration":849,"passed_time":0.2317687272,"remaining_time":0.04090036363},
854
+ {"learn":[2.99864229],"iteration":850,"passed_time":0.2320304581,"remaining_time":0.04062577938},
855
+ {"learn":[2.998445479],"iteration":851,"passed_time":0.2323180204,"remaining_time":0.04035571246},
856
+ {"learn":[2.996921098],"iteration":852,"passed_time":0.2325892922,"remaining_time":0.04008279714},
857
+ {"learn":[2.994814482],"iteration":853,"passed_time":0.2328476484,"remaining_time":0.03980767759},
858
+ {"learn":[2.994203044],"iteration":854,"passed_time":0.2331099209,"remaining_time":0.03953326143},
859
+ {"learn":[2.992415528],"iteration":855,"passed_time":0.2333705268,"remaining_time":0.03925859329},
860
+ {"learn":[2.990238371],"iteration":856,"passed_time":0.2336425903,"remaining_time":0.03898586979},
861
+ {"learn":[2.988030999],"iteration":857,"passed_time":0.2339773575,"remaining_time":0.03872352536},
862
+ {"learn":[2.98686703],"iteration":858,"passed_time":0.2342566704,"remaining_time":0.0384519098},
863
+ {"learn":[2.986230161],"iteration":859,"passed_time":0.2345425245,"remaining_time":0.03818134119},
864
+ {"learn":[2.982846842],"iteration":860,"passed_time":0.2348037971,"remaining_time":0.03790676863},
865
+ {"learn":[2.980388721],"iteration":861,"passed_time":0.2351081498,"remaining_time":0.03763912375},
866
+ {"learn":[2.980196359],"iteration":862,"passed_time":0.2354482916,"remaining_time":0.03737707526},
867
+ {"learn":[2.978390145],"iteration":863,"passed_time":0.2357740178,"remaining_time":0.03711257688},
868
+ {"learn":[2.977340627],"iteration":864,"passed_time":0.2360333738,"remaining_time":0.03683757858},
869
+ {"learn":[2.977224973],"iteration":865,"passed_time":0.2362756895,"remaining_time":0.03655997966},
870
+ {"learn":[2.97396144],"iteration":866,"passed_time":0.2365257129,"remaining_time":0.03628364453},
871
+ {"learn":[2.973406119],"iteration":867,"passed_time":0.2367691117,"remaining_time":0.03600636262},
872
+ {"learn":[2.971250295],"iteration":868,"passed_time":0.237007636,"remaining_time":0.03572842384},
873
+ {"learn":[2.970503266],"iteration":869,"passed_time":0.2372584093,"remaining_time":0.03545240599},
874
+ {"learn":[2.968845317],"iteration":870,"passed_time":0.2374962253,"remaining_time":0.03517452705},
875
+ {"learn":[2.967679252],"iteration":871,"passed_time":0.2377441238,"remaining_time":0.03489822001},
876
+ {"learn":[2.966016375],"iteration":872,"passed_time":0.2379881476,"remaining_time":0.03462141438},
877
+ {"learn":[2.963942786],"iteration":873,"passed_time":0.2382587945,"remaining_time":0.03434852187},
878
+ {"learn":[2.963097097],"iteration":874,"passed_time":0.2384993186,"remaining_time":0.03407133123},
879
+ {"learn":[2.961599321],"iteration":875,"passed_time":0.2387607995,"remaining_time":0.0337971908},
880
+ {"learn":[2.959288947],"iteration":876,"passed_time":0.2390196556,"remaining_time":0.0335227111},
881
+ {"learn":[2.957668681],"iteration":877,"passed_time":0.2392433059,"remaining_time":0.03324337508},
882
+ {"learn":[2.95524532],"iteration":878,"passed_time":0.2395077866,"remaining_time":0.03296978632},
883
+ {"learn":[2.954812854],"iteration":879,"passed_time":0.2397402696,"remaining_time":0.03269185494},
884
+ {"learn":[2.954043004],"iteration":880,"passed_time":0.2399736692,"remaining_time":0.03241415055},
885
+ {"learn":[2.951643592],"iteration":881,"passed_time":0.240231442,"remaining_time":0.03213980744},
886
+ {"learn":[2.950510194],"iteration":882,"passed_time":0.2404642167,"remaining_time":0.03186218953},
887
+ {"learn":[2.949737292],"iteration":883,"passed_time":0.2407408215,"remaining_time":0.03159042454},
888
+ {"learn":[2.947277616],"iteration":884,"passed_time":0.2409998859,"remaining_time":0.03131636935},
889
+ {"learn":[2.945493653],"iteration":885,"passed_time":0.2412641999,"remaining_time":0.03104302346},
890
+ {"learn":[2.942672087],"iteration":886,"passed_time":0.2415295971,"remaining_time":0.03076983594},
891
+ {"learn":[2.93807454],"iteration":887,"passed_time":0.2417796205,"remaining_time":0.03049472691},
892
+ {"learn":[2.936599781],"iteration":888,"passed_time":0.2420238943,"remaining_time":0.03021895644},
893
+ {"learn":[2.934685943],"iteration":889,"passed_time":0.2422934996,"remaining_time":0.0299463876},
894
+ {"learn":[2.932147681],"iteration":890,"passed_time":0.2425453562,"remaining_time":0.02967165413},
895
+ {"learn":[2.930110576],"iteration":891,"passed_time":0.2428065038,"remaining_time":0.02939809687},
896
+ {"learn":[2.929542302],"iteration":892,"passed_time":0.243059277,"remaining_time":0.02912356399},
897
+ {"learn":[2.928736637],"iteration":893,"passed_time":0.2433153,"remaining_time":0.0288494651},
898
+ {"learn":[2.928619084],"iteration":894,"passed_time":0.2435872384,"remaining_time":0.02857727378},
899
+ {"learn":[2.927130534],"iteration":895,"passed_time":0.2438302207,"remaining_time":0.02830172204},
900
+ {"learn":[2.926282232],"iteration":896,"passed_time":0.2440821606,"remaining_time":0.0280272715},
901
+ {"learn":[2.924564878],"iteration":897,"passed_time":0.2443453913,"remaining_time":0.02775415358},
902
+ {"learn":[2.924146036],"iteration":898,"passed_time":0.2446105386,"remaining_time":0.02748127297},
903
+ {"learn":[2.922371374],"iteration":899,"passed_time":0.2448662699,"remaining_time":0.02720736333},
904
+ {"learn":[2.921827908],"iteration":900,"passed_time":0.24511646,"remaining_time":0.02693288517},
905
+ {"learn":[2.919108451],"iteration":901,"passed_time":0.2453689415,"remaining_time":0.02665870983},
906
+ {"learn":[2.917160182],"iteration":902,"passed_time":0.2456207565,"remaining_time":0.02638451094},
907
+ {"learn":[2.914541042],"iteration":903,"passed_time":0.2458666135,"remaining_time":0.02610972887},
908
+ {"learn":[2.91372249],"iteration":904,"passed_time":0.246110929,"remaining_time":0.0258348489},
909
+ {"learn":[2.912233507],"iteration":905,"passed_time":0.246452029,"remaining_time":0.02557007807},
910
+ {"learn":[2.908889322],"iteration":906,"passed_time":0.24671301,"remaining_time":0.02529692384},
911
+ {"learn":[2.906638512],"iteration":907,"passed_time":0.2469916146,"remaining_time":0.0250255821},
912
+ {"learn":[2.904644332],"iteration":908,"passed_time":0.2472988005,"remaining_time":0.02475708564},
913
+ {"learn":[2.903836178],"iteration":909,"passed_time":0.2475559067,"remaining_time":0.02448355121},
914
+ {"learn":[2.902772637],"iteration":910,"passed_time":0.2478353029,"remaining_time":0.02421223047},
915
+ {"learn":[2.901126449],"iteration":911,"passed_time":0.2481093662,"remaining_time":0.02394037744},
916
+ {"learn":[2.899040983],"iteration":912,"passed_time":0.248381888,"remaining_time":0.02366837268},
917
+ {"learn":[2.898983916],"iteration":913,"passed_time":0.2485745406,"remaining_time":0.02338885174},
918
+ {"learn":[2.897856205],"iteration":914,"passed_time":0.2488961837,"remaining_time":0.02312150341},
919
+ {"learn":[2.89366581],"iteration":915,"passed_time":0.2492074943,"remaining_time":0.022853089},
920
+ {"learn":[2.892404824],"iteration":916,"passed_time":0.2494892654,"remaining_time":0.02258190734},
921
+ {"learn":[2.889828972],"iteration":917,"passed_time":0.2497323726,"remaining_time":0.02230724897},
922
+ {"learn":[2.889723183],"iteration":918,"passed_time":0.2499719384,"remaining_time":0.02203234713},
923
+ {"learn":[2.887381373],"iteration":919,"passed_time":0.2502300862,"remaining_time":0.02175913793},
924
+ {"learn":[2.886226232],"iteration":920,"passed_time":0.2504979833,"remaining_time":0.0214867977},
925
+ {"learn":[2.884793862],"iteration":921,"passed_time":0.2507410906,"remaining_time":0.02121236992},
926
+ {"learn":[2.883922763],"iteration":922,"passed_time":0.2510027381,"remaining_time":0.0209395567},
927
+ {"learn":[2.881748668],"iteration":923,"passed_time":0.2512675521,"remaining_time":0.02066702809},
928
+ {"learn":[2.878738385],"iteration":924,"passed_time":0.2515159923,"remaining_time":0.02039318856},
929
+ {"learn":[2.877057604],"iteration":925,"passed_time":0.251756183,"remaining_time":0.02011874465},
930
+ {"learn":[2.875393846],"iteration":926,"passed_time":0.2519991236,"remaining_time":0.01984459118},
931
+ {"learn":[2.873508068],"iteration":927,"passed_time":0.2522408559,"remaining_time":0.01957041124},
932
+ {"learn":[2.870616392],"iteration":928,"passed_time":0.2524672977,"remaining_time":0.01929513255},
933
+ {"learn":[2.867669846],"iteration":929,"passed_time":0.2527124465,"remaining_time":0.01902136694},
934
+ {"learn":[2.866428712],"iteration":930,"passed_time":0.2529568869,"remaining_time":0.01874761031},
935
+ {"learn":[2.864632719],"iteration":931,"passed_time":0.2531942863,"remaining_time":0.01847340286},
936
+ {"learn":[2.864382091],"iteration":932,"passed_time":0.2534638082,"remaining_time":0.01820158108},
937
+ {"learn":[2.864239067],"iteration":933,"passed_time":0.2537954923,"remaining_time":0.01793415685},
938
+ {"learn":[2.863790019],"iteration":934,"passed_time":0.254091304,"remaining_time":0.01766410135},
939
+ {"learn":[2.862371877],"iteration":935,"passed_time":0.2543498268,"remaining_time":0.01739144115},
940
+ {"learn":[2.861452973],"iteration":936,"passed_time":0.2546105578,"remaining_time":0.01711895959},
941
+ {"learn":[2.859175277],"iteration":937,"passed_time":0.2548701221,"remaining_time":0.01684642598},
942
+ {"learn":[2.857772602],"iteration":938,"passed_time":0.2551291032,"remaining_time":0.0165738821},
943
+ {"learn":[2.856975878],"iteration":939,"passed_time":0.2553755435,"remaining_time":0.01630056661},
944
+ {"learn":[2.856369085],"iteration":940,"passed_time":0.2556111096,"remaining_time":0.01602662643},
945
+ {"learn":[2.854125598],"iteration":941,"passed_time":0.2558543002,"remaining_time":0.01575323717},
946
+ {"learn":[2.851529398],"iteration":942,"passed_time":0.256094616,"remaining_time":0.01547973819},
947
+ {"learn":[2.851440583],"iteration":943,"passed_time":0.2563320986,"remaining_time":0.01520614144},
948
+ {"learn":[2.847622731],"iteration":944,"passed_time":0.2565813304,"remaining_time":0.01493330494},
949
+ {"learn":[2.844712999],"iteration":945,"passed_time":0.2568347702,"remaining_time":0.01466075855},
950
+ {"learn":[2.844419284],"iteration":946,"passed_time":0.2570965011,"remaining_time":0.01438871653},
951
+ {"learn":[2.84170937],"iteration":947,"passed_time":0.2573621066,"remaining_time":0.0141169088},
952
+ {"learn":[2.840980192],"iteration":948,"passed_time":0.257598506,"remaining_time":0.01384354458},
953
+ {"learn":[2.840033073],"iteration":949,"passed_time":0.257835697,"remaining_time":0.01357029984},
954
+ {"learn":[2.838608065],"iteration":950,"passed_time":0.2580780543,"remaining_time":0.01329739712},
955
+ {"learn":[2.836176338],"iteration":951,"passed_time":0.2583096207,"remaining_time":0.01302401449},
956
+ {"learn":[2.83354905],"iteration":952,"passed_time":0.2585733515,"remaining_time":0.0127523059},
957
+ {"learn":[2.831764803],"iteration":953,"passed_time":0.2588419568,"remaining_time":0.01248084907},
958
+ {"learn":[2.830333837],"iteration":954,"passed_time":0.259136602,"remaining_time":0.01221062522},
959
+ {"learn":[2.826381913],"iteration":955,"passed_time":0.2593705015,"remaining_time":0.01193755446},
960
+ {"learn":[2.825916915],"iteration":956,"passed_time":0.2597700973,"remaining_time":0.01167201064},
961
+ {"learn":[2.825790476],"iteration":957,"passed_time":0.2600397026,"remaining_time":0.01140048801},
962
+ {"learn":[2.824999167],"iteration":958,"passed_time":0.2603105162,"remaining_time":0.01112902102},
963
+ {"learn":[2.823039719],"iteration":959,"passed_time":0.260599995,"remaining_time":0.01085833312},
964
+ {"learn":[2.821686111],"iteration":960,"passed_time":0.2608604343,"remaining_time":0.01058642761},
965
+ {"learn":[2.819602944],"iteration":961,"passed_time":0.2611067913,"remaining_time":0.01031398968},
966
+ {"learn":[2.818102327],"iteration":962,"passed_time":0.2613539816,"remaining_time":0.01004163792},
967
+ {"learn":[2.815444953],"iteration":963,"passed_time":0.2616154624,"remaining_time":0.009769872042},
968
+ {"learn":[2.814213842],"iteration":964,"passed_time":0.2618685273,"remaining_time":0.009497822233},
969
+ {"learn":[2.811517413],"iteration":965,"passed_time":0.2621607143,"remaining_time":0.009227188701},
970
+ {"learn":[2.811110307],"iteration":966,"passed_time":0.2624308195,"remaining_time":0.008955757026},
971
+ {"learn":[2.810151588],"iteration":967,"passed_time":0.2626997165,"remaining_time":0.00868428815},
972
+ {"learn":[2.807821034],"iteration":968,"passed_time":0.2629454902,"remaining_time":0.008412084827},
973
+ {"learn":[2.80602392],"iteration":969,"passed_time":0.2631898057,"remaining_time":0.008139890898},
974
+ {"learn":[2.805249426],"iteration":970,"passed_time":0.2634264967,"remaining_time":0.007867526679},
975
+ {"learn":[2.801649628],"iteration":971,"passed_time":0.2636735204,"remaining_time":0.007595533508},
976
+ {"learn":[2.800158318],"iteration":972,"passed_time":0.2639151694,"remaining_time":0.007323442521},
977
+ {"learn":[2.798814886],"iteration":973,"passed_time":0.2641596515,"remaining_time":0.00705148967},
978
+ {"learn":[2.798732613],"iteration":974,"passed_time":0.2643903013,"remaining_time":0.006779238495},
979
+ {"learn":[2.797203132],"iteration":975,"passed_time":0.2646346584,"remaining_time":0.006507409634},
980
+ {"learn":[2.79634081],"iteration":976,"passed_time":0.2648706412,"remaining_time":0.006235439864},
981
+ {"learn":[2.795342682],"iteration":977,"passed_time":0.2651049991,"remaining_time":0.005963507137},
982
+ {"learn":[2.792385271],"iteration":978,"passed_time":0.2653708546,"remaining_time":0.00569232681},
983
+ {"learn":[2.790250965],"iteration":979,"passed_time":0.2656496259,"remaining_time":0.005421420937},
984
+ {"learn":[2.787505227],"iteration":980,"passed_time":0.2659247725,"remaining_time":0.005150428825},
985
+ {"learn":[2.784804775],"iteration":981,"passed_time":0.2662043771,"remaining_time":0.004879509966},
986
+ {"learn":[2.783184744],"iteration":982,"passed_time":0.2664457761,"remaining_time":0.004607912709},
987
+ {"learn":[2.782567352],"iteration":983,"passed_time":0.2666861752,"remaining_time":0.004336360572},
988
+ {"learn":[2.780561028],"iteration":984,"passed_time":0.2669641549,"remaining_time":0.004065443983},
989
+ {"learn":[2.779457187],"iteration":985,"passed_time":0.2672042623,"remaining_time":0.003793975327},
990
+ {"learn":[2.778624548],"iteration":986,"passed_time":0.2674550356,"remaining_time":0.003522710703},
991
+ {"learn":[2.776978061],"iteration":987,"passed_time":0.2677155583,"remaining_time":0.003251605971},
992
+ {"learn":[2.775281479],"iteration":988,"passed_time":0.2679723728,"remaining_time":0.002980481397},
993
+ {"learn":[2.773346239],"iteration":989,"passed_time":0.2682048558,"remaining_time":0.002709139958},
994
+ {"learn":[2.772078313],"iteration":990,"passed_time":0.2684367972,"remaining_time":0.002437872023},
995
+ {"learn":[2.770273133],"iteration":991,"passed_time":0.2686812794,"remaining_time":0.002166784511},
996
+ {"learn":[2.769557288],"iteration":992,"passed_time":0.2689610506,"remaining_time":0.001895999349},
997
+ {"learn":[2.768070031],"iteration":993,"passed_time":0.2692317808,"remaining_time":0.001625141534},
998
+ {"learn":[2.767576106],"iteration":994,"passed_time":0.2695113854,"remaining_time":0.00135432857},
999
+ {"learn":[2.766824519],"iteration":995,"passed_time":0.2697783658,"remaining_time":0.001083447252},
1000
+ {"learn":[2.765640051],"iteration":996,"passed_time":0.2700363053,"remaining_time":0.0008125465556},
1001
+ {"learn":[2.763448619],"iteration":997,"passed_time":0.2702678301,"remaining_time":0.0005416188979},
1002
+ {"learn":[2.760067325],"iteration":998,"passed_time":0.2705151037,"remaining_time":0.0002707858895},
1003
+ {"learn":[2.759976096],"iteration":999,"passed_time":0.2707842507,"remaining_time":0}
1004
+ ]}
notebook/catboost_info/learn/events.out.tfevents ADDED
Binary file (48.9 kB). View file
 
notebook/catboost_info/learn_error.tsv ADDED
@@ -0,0 +1,1001 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ iter RMSE
2
+ 0 15.1265543
3
+ 1 14.76531882
4
+ 2 14.3879254
5
+ 3 14.01588715
6
+ 4 13.73314153
7
+ 5 13.45632399
8
+ 6 13.15514533
9
+ 7 12.86146543
10
+ 8 12.59672108
11
+ 9 12.29909788
12
+ 10 12.01075573
13
+ 11 11.76734151
14
+ 12 11.53860334
15
+ 13 11.28032808
16
+ 14 11.04717079
17
+ 15 10.80674421
18
+ 16 10.57398569
19
+ 17 10.37210883
20
+ 18 10.18093548
21
+ 19 9.991004731
22
+ 20 9.796980163
23
+ 21 9.601210494
24
+ 22 9.427545622
25
+ 23 9.258143104
26
+ 24 9.093042489
27
+ 25 8.941806339
28
+ 26 8.795319972
29
+ 27 8.660725435
30
+ 28 8.524201883
31
+ 29 8.403377905
32
+ 30 8.278937492
33
+ 31 8.162401232
34
+ 32 8.059254597
35
+ 33 7.958828934
36
+ 34 7.870864998
37
+ 35 7.766741368
38
+ 36 7.669930305
39
+ 37 7.577312743
40
+ 38 7.478019538
41
+ 39 7.379904448
42
+ 40 7.288172815
43
+ 41 7.208116897
44
+ 42 7.130375614
45
+ 43 7.058473883
46
+ 44 6.983673516
47
+ 45 6.917628677
48
+ 46 6.846655393
49
+ 47 6.778684223
50
+ 48 6.721658136
51
+ 49 6.668189895
52
+ 50 6.608743329
53
+ 51 6.554654005
54
+ 52 6.504736955
55
+ 53 6.45571475
56
+ 54 6.40230382
57
+ 55 6.353725587
58
+ 56 6.309792734
59
+ 57 6.272292275
60
+ 58 6.234786704
61
+ 59 6.197468532
62
+ 60 6.156716152
63
+ 61 6.124195753
64
+ 62 6.090073428
65
+ 63 6.057363739
66
+ 64 6.028431233
67
+ 65 5.993623132
68
+ 66 5.956903466
69
+ 67 5.927808694
70
+ 68 5.90957325
71
+ 69 5.878120336
72
+ 70 5.85626574
73
+ 71 5.82879226
74
+ 72 5.802517291
75
+ 73 5.774188846
76
+ 74 5.751751831
77
+ 75 5.72935383
78
+ 76 5.702009265
79
+ 77 5.683379635
80
+ 78 5.662958386
81
+ 79 5.644471812
82
+ 80 5.623254548
83
+ 81 5.606485251
84
+ 82 5.590400599
85
+ 83 5.572784113
86
+ 84 5.557455625
87
+ 85 5.538956881
88
+ 86 5.522414125
89
+ 87 5.510469967
90
+ 88 5.494820199
91
+ 89 5.480436107
92
+ 90 5.466480778
93
+ 91 5.448749805
94
+ 92 5.438044333
95
+ 93 5.425701943
96
+ 94 5.410226035
97
+ 95 5.396830474
98
+ 96 5.386154832
99
+ 97 5.37389183
100
+ 98 5.364441134
101
+ 99 5.353754152
102
+ 100 5.341537434
103
+ 101 5.331299655
104
+ 102 5.320175338
105
+ 103 5.311032429
106
+ 104 5.301887471
107
+ 105 5.291511894
108
+ 106 5.28149165
109
+ 107 5.272145091
110
+ 108 5.264393073
111
+ 109 5.257582673
112
+ 110 5.250180575
113
+ 111 5.240350576
114
+ 112 5.23255234
115
+ 113 5.225766752
116
+ 114 5.21808604
117
+ 115 5.209445346
118
+ 116 5.200614621
119
+ 117 5.192995601
120
+ 118 5.183477277
121
+ 119 5.176857565
122
+ 120 5.168768902
123
+ 121 5.163146229
124
+ 122 5.155642108
125
+ 123 5.151430906
126
+ 124 5.146832937
127
+ 125 5.138945313
128
+ 126 5.131760576
129
+ 127 5.123648119
130
+ 128 5.118605987
131
+ 129 5.111073959
132
+ 130 5.105838441
133
+ 131 5.098692245
134
+ 132 5.092413908
135
+ 133 5.087136879
136
+ 134 5.077511908
137
+ 135 5.072893764
138
+ 136 5.067641332
139
+ 137 5.062842921
140
+ 138 5.058220375
141
+ 139 5.05313532
142
+ 140 5.044193513
143
+ 141 5.034908156
144
+ 142 5.027535466
145
+ 143 5.022438844
146
+ 144 5.016225517
147
+ 145 5.011990502
148
+ 146 5.007083832
149
+ 147 5.003116679
150
+ 148 4.996306811
151
+ 149 4.99254133
152
+ 150 4.989054834
153
+ 151 4.983255177
154
+ 152 4.979400743
155
+ 153 4.976142511
156
+ 154 4.967694858
157
+ 155 4.964102333
158
+ 156 4.959150127
159
+ 157 4.950493915
160
+ 158 4.943039487
161
+ 159 4.939860812
162
+ 160 4.935677432
163
+ 161 4.928796208
164
+ 162 4.924471875
165
+ 163 4.919730347
166
+ 164 4.91250271
167
+ 165 4.90210769
168
+ 166 4.899303282
169
+ 167 4.894357726
170
+ 168 4.889448852
171
+ 169 4.886739966
172
+ 170 4.881971886
173
+ 171 4.878871351
174
+ 172 4.873387828
175
+ 173 4.869110532
176
+ 174 4.86144216
177
+ 175 4.855007324
178
+ 176 4.849578341
179
+ 177 4.846068054
180
+ 178 4.840616045
181
+ 179 4.836353044
182
+ 180 4.830015707
183
+ 181 4.82561487
184
+ 182 4.822339225
185
+ 183 4.816229344
186
+ 184 4.813222208
187
+ 185 4.809062815
188
+ 186 4.805320748
189
+ 187 4.799344347
190
+ 188 4.794786572
191
+ 189 4.791217685
192
+ 190 4.788386147
193
+ 191 4.78371247
194
+ 192 4.781450393
195
+ 193 4.778075167
196
+ 194 4.775363269
197
+ 195 4.771428798
198
+ 196 4.769591154
199
+ 197 4.765449522
200
+ 198 4.760659277
201
+ 199 4.755469841
202
+ 200 4.751305719
203
+ 201 4.74613286
204
+ 202 4.74228704
205
+ 203 4.740344894
206
+ 204 4.736920435
207
+ 205 4.734062199
208
+ 206 4.731715154
209
+ 207 4.728588802
210
+ 208 4.724947154
211
+ 209 4.7199548
212
+ 210 4.718091098
213
+ 211 4.716063624
214
+ 212 4.714224061
215
+ 213 4.713531362
216
+ 214 4.709308358
217
+ 215 4.702970862
218
+ 216 4.69850639
219
+ 217 4.693399542
220
+ 218 4.689012311
221
+ 219 4.685781341
222
+ 220 4.682895342
223
+ 221 4.675457775
224
+ 222 4.673717861
225
+ 223 4.66796126
226
+ 224 4.664657176
227
+ 225 4.662438059
228
+ 226 4.660454475
229
+ 227 4.655249615
230
+ 228 4.652033732
231
+ 229 4.647016316
232
+ 230 4.645334563
233
+ 231 4.639917142
234
+ 232 4.637271104
235
+ 233 4.629314146
236
+ 234 4.627390624
237
+ 235 4.624820749
238
+ 236 4.620538965
239
+ 237 4.617880017
240
+ 238 4.615611002
241
+ 239 4.610093142
242
+ 240 4.607865741
243
+ 241 4.604587452
244
+ 242 4.603714753
245
+ 243 4.602173869
246
+ 244 4.599118041
247
+ 245 4.592606239
248
+ 246 4.590147825
249
+ 247 4.587448447
250
+ 248 4.581530029
251
+ 249 4.576795625
252
+ 250 4.572572662
253
+ 251 4.571131755
254
+ 252 4.564834493
255
+ 253 4.56091144
256
+ 254 4.554152668
257
+ 255 4.545912243
258
+ 256 4.541765951
259
+ 257 4.538883182
260
+ 258 4.534978446
261
+ 259 4.531276413
262
+ 260 4.529674704
263
+ 261 4.525108817
264
+ 262 4.520023134
265
+ 263 4.513845655
266
+ 264 4.513127245
267
+ 265 4.509871075
268
+ 266 4.506099125
269
+ 267 4.504927057
270
+ 268 4.497894799
271
+ 269 4.493386766
272
+ 270 4.49151442
273
+ 271 4.490824078
274
+ 272 4.486517123
275
+ 273 4.485509041
276
+ 274 4.478635858
277
+ 275 4.476141616
278
+ 276 4.47389577
279
+ 277 4.470926914
280
+ 278 4.465984122
281
+ 279 4.462169451
282
+ 280 4.454121613
283
+ 281 4.453048966
284
+ 282 4.448305637
285
+ 283 4.44538271
286
+ 284 4.444748871
287
+ 285 4.441429175
288
+ 286 4.439304577
289
+ 287 4.431206801
290
+ 288 4.430512668
291
+ 289 4.429619628
292
+ 290 4.4267443
293
+ 291 4.42450129
294
+ 292 4.417559487
295
+ 293 4.414609808
296
+ 294 4.406171939
297
+ 295 4.40002785
298
+ 296 4.399196885
299
+ 297 4.393559612
300
+ 298 4.389540858
301
+ 299 4.385905506
302
+ 300 4.385097212
303
+ 301 4.38377915
304
+ 302 4.380358106
305
+ 303 4.37303847
306
+ 304 4.369526346
307
+ 305 4.363321831
308
+ 306 4.36144972
309
+ 307 4.354847006
310
+ 308 4.352472989
311
+ 309 4.346688804
312
+ 310 4.343237072
313
+ 311 4.340350164
314
+ 312 4.333921122
315
+ 313 4.330232529
316
+ 314 4.32838479
317
+ 315 4.323854013
318
+ 316 4.322053685
319
+ 317 4.315063493
320
+ 318 4.310576801
321
+ 319 4.307173161
322
+ 320 4.306421463
323
+ 321 4.301930471
324
+ 322 4.296318941
325
+ 323 4.292536859
326
+ 324 4.28585978
327
+ 325 4.278336336
328
+ 326 4.271154999
329
+ 327 4.267657725
330
+ 328 4.263390188
331
+ 329 4.258918732
332
+ 330 4.257080894
333
+ 331 4.253227555
334
+ 332 4.245955597
335
+ 333 4.244894649
336
+ 334 4.243272233
337
+ 335 4.238309594
338
+ 336 4.235600207
339
+ 337 4.229207272
340
+ 338 4.226112706
341
+ 339 4.225043188
342
+ 340 4.224607115
343
+ 341 4.223565557
344
+ 342 4.221156199
345
+ 343 4.216025145
346
+ 344 4.211757058
347
+ 345 4.211063947
348
+ 346 4.207303205
349
+ 347 4.203295029
350
+ 348 4.20266981
351
+ 349 4.199546031
352
+ 350 4.197399649
353
+ 351 4.196674325
354
+ 352 4.190519914
355
+ 353 4.185534852
356
+ 354 4.181236034
357
+ 355 4.177082121
358
+ 356 4.172078436
359
+ 357 4.167322871
360
+ 358 4.160753887
361
+ 359 4.15797125
362
+ 360 4.153810828
363
+ 361 4.149274528
364
+ 362 4.148634197
365
+ 363 4.148031909
366
+ 364 4.146042091
367
+ 365 4.141638955
368
+ 366 4.137014803
369
+ 367 4.130108824
370
+ 368 4.128868242
371
+ 369 4.12840523
372
+ 370 4.125212124
373
+ 371 4.123724441
374
+ 372 4.119877678
375
+ 373 4.114368022
376
+ 374 4.112013827
377
+ 375 4.108458484
378
+ 376 4.10311947
379
+ 377 4.099862365
380
+ 378 4.095969525
381
+ 379 4.095051444
382
+ 380 4.093668934
383
+ 381 4.087958241
384
+ 382 4.083809477
385
+ 383 4.079405368
386
+ 384 4.078958707
387
+ 385 4.074270819
388
+ 386 4.068982879
389
+ 387 4.066919195
390
+ 388 4.063040347
391
+ 389 4.059965604
392
+ 390 4.056466413
393
+ 391 4.052251448
394
+ 392 4.049116984
395
+ 393 4.046702367
396
+ 394 4.043968668
397
+ 395 4.037689325
398
+ 396 4.034248821
399
+ 397 4.030151804
400
+ 398 4.026308025
401
+ 399 4.02549331
402
+ 400 4.024503944
403
+ 401 4.022285786
404
+ 402 4.020459724
405
+ 403 4.019976123
406
+ 404 4.015411374
407
+ 405 4.012459384
408
+ 406 4.008763792
409
+ 407 4.00457713
410
+ 408 3.999604683
411
+ 409 3.998709615
412
+ 410 3.995654005
413
+ 411 3.991188181
414
+ 412 3.987484525
415
+ 413 3.987244546
416
+ 414 3.983688234
417
+ 415 3.978441912
418
+ 416 3.975259443
419
+ 417 3.972340676
420
+ 418 3.970139142
421
+ 419 3.966907249
422
+ 420 3.963717401
423
+ 421 3.960864992
424
+ 422 3.960507096
425
+ 423 3.958150017
426
+ 424 3.953509954
427
+ 425 3.952628182
428
+ 426 3.949160789
429
+ 427 3.945781176
430
+ 428 3.943454593
431
+ 429 3.939301114
432
+ 430 3.9373499
433
+ 431 3.932516134
434
+ 432 3.92842631
435
+ 433 3.92657866
436
+ 434 3.922278344
437
+ 435 3.920860587
438
+ 436 3.917783045
439
+ 437 3.914169768
440
+ 438 3.912035
441
+ 439 3.905571111
442
+ 440 3.90276289
443
+ 441 3.900306134
444
+ 442 3.895991507
445
+ 443 3.892639123
446
+ 444 3.891188016
447
+ 445 3.885916341
448
+ 446 3.882899599
449
+ 447 3.87783158
450
+ 448 3.875181536
451
+ 449 3.869035903
452
+ 450 3.866716566
453
+ 451 3.863131447
454
+ 452 3.862380187
455
+ 453 3.860271906
456
+ 454 3.856522672
457
+ 455 3.855160851
458
+ 456 3.854193471
459
+ 457 3.851968888
460
+ 458 3.847181017
461
+ 459 3.842780767
462
+ 460 3.841515037
463
+ 461 3.837572715
464
+ 462 3.833847686
465
+ 463 3.829554237
466
+ 464 3.824694806
467
+ 465 3.822882534
468
+ 466 3.818246428
469
+ 467 3.817360199
470
+ 468 3.81442954
471
+ 469 3.811816601
472
+ 470 3.80683768
473
+ 471 3.80610564
474
+ 472 3.804661571
475
+ 473 3.803941927
476
+ 474 3.801799028
477
+ 475 3.798376585
478
+ 476 3.794183777
479
+ 477 3.79296918
480
+ 478 3.789433536
481
+ 479 3.786880136
482
+ 480 3.784456111
483
+ 481 3.782507926
484
+ 482 3.780285238
485
+ 483 3.777418203
486
+ 484 3.771566855
487
+ 485 3.768556284
488
+ 486 3.765686505
489
+ 487 3.76216015
490
+ 488 3.76150666
491
+ 489 3.75960899
492
+ 490 3.758430462
493
+ 491 3.753599087
494
+ 492 3.750950429
495
+ 493 3.749390914
496
+ 494 3.746518046
497
+ 495 3.743886722
498
+ 496 3.741298525
499
+ 497 3.738798676
500
+ 498 3.737880869
501
+ 499 3.737206978
502
+ 500 3.733696747
503
+ 501 3.731672565
504
+ 502 3.729621261
505
+ 503 3.726132522
506
+ 504 3.72240354
507
+ 505 3.720959851
508
+ 506 3.716738656
509
+ 507 3.713112762
510
+ 508 3.710772899
511
+ 509 3.707220715
512
+ 510 3.704346456
513
+ 511 3.703757073
514
+ 512 3.702014274
515
+ 513 3.699013563
516
+ 514 3.69502317
517
+ 515 3.694868559
518
+ 516 3.690349059
519
+ 517 3.685560511
520
+ 518 3.683717968
521
+ 519 3.683233632
522
+ 520 3.68154876
523
+ 521 3.679692547
524
+ 522 3.677546274
525
+ 523 3.676980821
526
+ 524 3.674682929
527
+ 525 3.671792959
528
+ 526 3.668452908
529
+ 527 3.667898809
530
+ 528 3.665105737
531
+ 529 3.661562249
532
+ 530 3.659842899
533
+ 531 3.656907886
534
+ 532 3.653549224
535
+ 533 3.652858346
536
+ 534 3.650019408
537
+ 535 3.647263907
538
+ 536 3.642816299
539
+ 537 3.638631706
540
+ 538 3.637051847
541
+ 539 3.6351299
542
+ 540 3.633746911
543
+ 541 3.632064141
544
+ 542 3.630192638
545
+ 543 3.627103301
546
+ 544 3.6259669
547
+ 545 3.622567345
548
+ 546 3.620517421
549
+ 547 3.618905709
550
+ 548 3.616304574
551
+ 549 3.615505304
552
+ 550 3.614911264
553
+ 551 3.613401152
554
+ 552 3.608273545
555
+ 553 3.605438286
556
+ 554 3.605057936
557
+ 555 3.602876754
558
+ 556 3.598734026
559
+ 557 3.598578177
560
+ 558 3.597333538
561
+ 559 3.59438103
562
+ 560 3.591606014
563
+ 561 3.589148369
564
+ 562 3.585314533
565
+ 563 3.58431424
566
+ 564 3.580886967
567
+ 565 3.57693869
568
+ 566 3.572514079
569
+ 567 3.569804685
570
+ 568 3.566717871
571
+ 569 3.565756044
572
+ 570 3.562943265
573
+ 571 3.562261954
574
+ 572 3.558620521
575
+ 573 3.556312366
576
+ 574 3.552650431
577
+ 575 3.549624074
578
+ 576 3.548030903
579
+ 577 3.545652556
580
+ 578 3.54354168
581
+ 579 3.541285497
582
+ 580 3.541040864
583
+ 581 3.540046172
584
+ 582 3.538673948
585
+ 583 3.536688077
586
+ 584 3.536460552
587
+ 585 3.531786897
588
+ 586 3.530392627
589
+ 587 3.528537284
590
+ 588 3.527142596
591
+ 589 3.525846813
592
+ 590 3.521671099
593
+ 591 3.51683812
594
+ 592 3.514255728
595
+ 593 3.511784707
596
+ 594 3.509387145
597
+ 595 3.505752576
598
+ 596 3.502425777
599
+ 597 3.501829797
600
+ 598 3.501128686
601
+ 599 3.498561083
602
+ 600 3.49674858
603
+ 601 3.494986319
604
+ 602 3.489345323
605
+ 603 3.487535254
606
+ 604 3.484670982
607
+ 605 3.482935189
608
+ 606 3.477965291
609
+ 607 3.475706273
610
+ 608 3.473977153
611
+ 609 3.471471165
612
+ 610 3.468174774
613
+ 611 3.465040129
614
+ 612 3.463263022
615
+ 613 3.458996797
616
+ 614 3.457404176
617
+ 615 3.456072755
618
+ 616 3.455877599
619
+ 617 3.455266129
620
+ 618 3.45389987
621
+ 619 3.451221379
622
+ 620 3.447640917
623
+ 621 3.442378301
624
+ 622 3.44218612
625
+ 623 3.440192513
626
+ 624 3.440072845
627
+ 625 3.435895763
628
+ 626 3.431952441
629
+ 627 3.427752417
630
+ 628 3.425946666
631
+ 629 3.424369975
632
+ 630 3.42177517
633
+ 631 3.421154121
634
+ 632 3.418341522
635
+ 633 3.414231029
636
+ 634 3.412541223
637
+ 635 3.407815061
638
+ 636 3.406636415
639
+ 637 3.405530018
640
+ 638 3.403613125
641
+ 639 3.401252937
642
+ 640 3.400238857
643
+ 641 3.397564431
644
+ 642 3.394172752
645
+ 643 3.392867571
646
+ 644 3.390328772
647
+ 645 3.388954273
648
+ 646 3.384479935
649
+ 647 3.38216728
650
+ 648 3.381662368
651
+ 649 3.377650444
652
+ 650 3.375634858
653
+ 651 3.373992874
654
+ 652 3.371881665
655
+ 653 3.370229532
656
+ 654 3.369786873
657
+ 655 3.366852834
658
+ 656 3.366277675
659
+ 657 3.36215115
660
+ 658 3.35848276
661
+ 659 3.357310773
662
+ 660 3.355572128
663
+ 661 3.351763408
664
+ 662 3.349560592
665
+ 663 3.347879941
666
+ 664 3.345562727
667
+ 665 3.343774819
668
+ 666 3.341550721
669
+ 667 3.34111087
670
+ 668 3.336335693
671
+ 669 3.334831254
672
+ 670 3.332600659
673
+ 671 3.330188435
674
+ 672 3.327622588
675
+ 673 3.326808514
676
+ 674 3.325759602
677
+ 675 3.323188464
678
+ 676 3.322151729
679
+ 677 3.319917095
680
+ 678 3.316481419
681
+ 679 3.313542367
682
+ 680 3.311914229
683
+ 681 3.309325434
684
+ 682 3.307859041
685
+ 683 3.305235954
686
+ 684 3.304519664
687
+ 685 3.302969116
688
+ 686 3.301715774
689
+ 687 3.298466729
690
+ 688 3.295793921
691
+ 689 3.293524766
692
+ 690 3.292126108
693
+ 691 3.2910686
694
+ 692 3.289983527
695
+ 693 3.287861103
696
+ 694 3.284661373
697
+ 695 3.284110841
698
+ 696 3.280737676
699
+ 697 3.279361259
700
+ 698 3.278135159
701
+ 699 3.277954816
702
+ 700 3.27610216
703
+ 701 3.272329641
704
+ 702 3.27131915
705
+ 703 3.269162799
706
+ 704 3.267346565
707
+ 705 3.265084188
708
+ 706 3.262633719
709
+ 707 3.26039277
710
+ 708 3.25944478
711
+ 709 3.256763583
712
+ 710 3.253034101
713
+ 711 3.251299357
714
+ 712 3.249482076
715
+ 713 3.247016043
716
+ 714 3.244137954
717
+ 715 3.241949551
718
+ 716 3.240514141
719
+ 717 3.240167475
720
+ 718 3.239795766
721
+ 719 3.239078748
722
+ 720 3.237043601
723
+ 721 3.235089212
724
+ 722 3.23329073
725
+ 723 3.231367482
726
+ 724 3.227681517
727
+ 725 3.226541552
728
+ 726 3.224455704
729
+ 727 3.222932416
730
+ 728 3.221539739
731
+ 729 3.219408509
732
+ 730 3.217330855
733
+ 731 3.216543018
734
+ 732 3.214125656
735
+ 733 3.210439089
736
+ 734 3.209133078
737
+ 735 3.205535269
738
+ 736 3.205017565
739
+ 737 3.204216294
740
+ 738 3.203268489
741
+ 739 3.201320763
742
+ 740 3.198641809
743
+ 741 3.197657086
744
+ 742 3.196859589
745
+ 743 3.193632322
746
+ 744 3.191819714
747
+ 745 3.18880024
748
+ 746 3.188359008
749
+ 747 3.184816327
750
+ 748 3.184395914
751
+ 749 3.182592815
752
+ 750 3.1804873
753
+ 751 3.17924186
754
+ 752 3.177390352
755
+ 753 3.1734988
756
+ 754 3.170512768
757
+ 755 3.170234006
758
+ 756 3.166443113
759
+ 757 3.162939437
760
+ 758 3.161215141
761
+ 759 3.160326858
762
+ 760 3.158631997
763
+ 761 3.156861667
764
+ 762 3.153425432
765
+ 763 3.153058104
766
+ 764 3.152706573
767
+ 765 3.151708195
768
+ 766 3.149196934
769
+ 767 3.14744296
770
+ 768 3.144567235
771
+ 769 3.144201196
772
+ 770 3.141561568
773
+ 771 3.140240019
774
+ 772 3.139120379
775
+ 773 3.137913514
776
+ 774 3.135460068
777
+ 775 3.131749051
778
+ 776 3.131605657
779
+ 777 3.129546631
780
+ 778 3.128479703
781
+ 779 3.127247256
782
+ 780 3.124002329
783
+ 781 3.120759648
784
+ 782 3.118202743
785
+ 783 3.116266087
786
+ 784 3.113243018
787
+ 785 3.11123961
788
+ 786 3.111099336
789
+ 787 3.109735715
790
+ 788 3.109605615
791
+ 789 3.109470805
792
+ 790 3.105981983
793
+ 791 3.105857741
794
+ 792 3.103965487
795
+ 793 3.103126748
796
+ 794 3.100509776
797
+ 795 3.098582059
798
+ 796 3.095159514
799
+ 797 3.092884158
800
+ 798 3.092084728
801
+ 799 3.09092394
802
+ 800 3.087543022
803
+ 801 3.086141632
804
+ 802 3.085009846
805
+ 803 3.08399208
806
+ 804 3.082886622
807
+ 805 3.081513499
808
+ 806 3.080462847
809
+ 807 3.078298122
810
+ 808 3.07800503
811
+ 809 3.075343185
812
+ 810 3.072361329
813
+ 811 3.068298017
814
+ 812 3.065872601
815
+ 813 3.064302869
816
+ 814 3.06334264
817
+ 815 3.060995132
818
+ 816 3.059938426
819
+ 817 3.059089581
820
+ 818 3.056908935
821
+ 819 3.056700767
822
+ 820 3.054709241
823
+ 821 3.052917049
824
+ 822 3.049822553
825
+ 823 3.048732235
826
+ 824 3.045954242
827
+ 825 3.044353362
828
+ 826 3.04191027
829
+ 827 3.038685052
830
+ 828 3.036088723
831
+ 829 3.033604082
832
+ 830 3.031878229
833
+ 831 3.030208492
834
+ 832 3.027358833
835
+ 833 3.024352682
836
+ 834 3.022708034
837
+ 835 3.022581443
838
+ 836 3.021922533
839
+ 837 3.020700594
840
+ 838 3.017346899
841
+ 839 3.016494297
842
+ 840 3.015289067
843
+ 841 3.015173678
844
+ 842 3.012899925
845
+ 843 3.010260643
846
+ 844 3.009871447
847
+ 845 3.008202216
848
+ 846 3.005137876
849
+ 847 3.003370225
850
+ 848 3.002052017
851
+ 849 3.000543323
852
+ 850 2.99864229
853
+ 851 2.998445479
854
+ 852 2.996921098
855
+ 853 2.994814482
856
+ 854 2.994203044
857
+ 855 2.992415528
858
+ 856 2.990238371
859
+ 857 2.988030999
860
+ 858 2.98686703
861
+ 859 2.986230161
862
+ 860 2.982846842
863
+ 861 2.980388721
864
+ 862 2.980196359
865
+ 863 2.978390145
866
+ 864 2.977340627
867
+ 865 2.977224973
868
+ 866 2.97396144
869
+ 867 2.973406119
870
+ 868 2.971250295
871
+ 869 2.970503266
872
+ 870 2.968845317
873
+ 871 2.967679252
874
+ 872 2.966016375
875
+ 873 2.963942786
876
+ 874 2.963097097
877
+ 875 2.961599321
878
+ 876 2.959288947
879
+ 877 2.957668681
880
+ 878 2.95524532
881
+ 879 2.954812854
882
+ 880 2.954043004
883
+ 881 2.951643592
884
+ 882 2.950510194
885
+ 883 2.949737292
886
+ 884 2.947277616
887
+ 885 2.945493653
888
+ 886 2.942672087
889
+ 887 2.93807454
890
+ 888 2.936599781
891
+ 889 2.934685943
892
+ 890 2.932147681
893
+ 891 2.930110576
894
+ 892 2.929542302
895
+ 893 2.928736637
896
+ 894 2.928619084
897
+ 895 2.927130534
898
+ 896 2.926282232
899
+ 897 2.924564878
900
+ 898 2.924146036
901
+ 899 2.922371374
902
+ 900 2.921827908
903
+ 901 2.919108451
904
+ 902 2.917160182
905
+ 903 2.914541042
906
+ 904 2.91372249
907
+ 905 2.912233507
908
+ 906 2.908889322
909
+ 907 2.906638512
910
+ 908 2.904644332
911
+ 909 2.903836178
912
+ 910 2.902772637
913
+ 911 2.901126449
914
+ 912 2.899040983
915
+ 913 2.898983916
916
+ 914 2.897856205
917
+ 915 2.89366581
918
+ 916 2.892404824
919
+ 917 2.889828972
920
+ 918 2.889723183
921
+ 919 2.887381373
922
+ 920 2.886226232
923
+ 921 2.884793862
924
+ 922 2.883922763
925
+ 923 2.881748668
926
+ 924 2.878738385
927
+ 925 2.877057604
928
+ 926 2.875393846
929
+ 927 2.873508068
930
+ 928 2.870616392
931
+ 929 2.867669846
932
+ 930 2.866428712
933
+ 931 2.864632719
934
+ 932 2.864382091
935
+ 933 2.864239067
936
+ 934 2.863790019
937
+ 935 2.862371877
938
+ 936 2.861452973
939
+ 937 2.859175277
940
+ 938 2.857772602
941
+ 939 2.856975878
942
+ 940 2.856369085
943
+ 941 2.854125598
944
+ 942 2.851529398
945
+ 943 2.851440583
946
+ 944 2.847622731
947
+ 945 2.844712999
948
+ 946 2.844419284
949
+ 947 2.84170937
950
+ 948 2.840980192
951
+ 949 2.840033073
952
+ 950 2.838608065
953
+ 951 2.836176338
954
+ 952 2.83354905
955
+ 953 2.831764803
956
+ 954 2.830333837
957
+ 955 2.826381913
958
+ 956 2.825916915
959
+ 957 2.825790476
960
+ 958 2.824999167
961
+ 959 2.823039719
962
+ 960 2.821686111
963
+ 961 2.819602944
964
+ 962 2.818102327
965
+ 963 2.815444953
966
+ 964 2.814213842
967
+ 965 2.811517413
968
+ 966 2.811110307
969
+ 967 2.810151588
970
+ 968 2.807821034
971
+ 969 2.80602392
972
+ 970 2.805249426
973
+ 971 2.801649628
974
+ 972 2.800158318
975
+ 973 2.798814886
976
+ 974 2.798732613
977
+ 975 2.797203132
978
+ 976 2.79634081
979
+ 977 2.795342682
980
+ 978 2.792385271
981
+ 979 2.790250965
982
+ 980 2.787505227
983
+ 981 2.784804775
984
+ 982 2.783184744
985
+ 983 2.782567352
986
+ 984 2.780561028
987
+ 985 2.779457187
988
+ 986 2.778624548
989
+ 987 2.776978061
990
+ 988 2.775281479
991
+ 989 2.773346239
992
+ 990 2.772078313
993
+ 991 2.770273133
994
+ 992 2.769557288
995
+ 993 2.768070031
996
+ 994 2.767576106
997
+ 995 2.766824519
998
+ 996 2.765640051
999
+ 997 2.763448619
1000
+ 998 2.760067325
1001
+ 999 2.759976096
notebook/catboost_info/time_left.tsv ADDED
@@ -0,0 +1,1001 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ iter Passed Remaining
2
+ 0 0 520
3
+ 1 0 413
4
+ 2 1 404
5
+ 3 1 382
6
+ 4 1 361
7
+ 5 2 352
8
+ 6 2 352
9
+ 7 2 346
10
+ 8 3 342
11
+ 9 3 333
12
+ 10 3 328
13
+ 11 3 317
14
+ 12 4 312
15
+ 13 4 313
16
+ 14 4 312
17
+ 15 5 311
18
+ 16 5 308
19
+ 17 5 306
20
+ 18 5 303
21
+ 19 6 300
22
+ 20 6 295
23
+ 21 6 293
24
+ 22 6 295
25
+ 23 7 294
26
+ 24 7 292
27
+ 25 7 292
28
+ 26 8 294
29
+ 27 8 294
30
+ 28 8 293
31
+ 29 9 292
32
+ 30 9 291
33
+ 31 9 294
34
+ 32 10 295
35
+ 33 10 294
36
+ 34 10 295
37
+ 35 11 295
38
+ 36 11 291
39
+ 37 11 290
40
+ 38 11 289
41
+ 39 12 289
42
+ 40 12 288
43
+ 41 12 287
44
+ 42 12 286
45
+ 43 13 285
46
+ 44 13 285
47
+ 45 13 286
48
+ 46 14 285
49
+ 47 14 284
50
+ 48 14 284
51
+ 49 14 283
52
+ 50 15 282
53
+ 51 15 282
54
+ 52 15 282
55
+ 53 16 282
56
+ 54 16 282
57
+ 55 16 282
58
+ 56 17 283
59
+ 57 17 283
60
+ 58 17 282
61
+ 59 18 282
62
+ 60 18 281
63
+ 61 18 280
64
+ 62 18 278
65
+ 63 19 278
66
+ 64 19 277
67
+ 65 19 276
68
+ 66 19 275
69
+ 67 20 274
70
+ 68 20 271
71
+ 69 20 270
72
+ 70 20 268
73
+ 71 20 267
74
+ 72 21 267
75
+ 73 21 266
76
+ 74 21 267
77
+ 75 21 266
78
+ 76 22 266
79
+ 77 22 266
80
+ 78 22 266
81
+ 79 23 266
82
+ 80 23 265
83
+ 81 23 264
84
+ 82 23 265
85
+ 83 24 265
86
+ 84 24 265
87
+ 85 24 264
88
+ 86 25 264
89
+ 87 25 262
90
+ 88 25 261
91
+ 89 25 261
92
+ 90 26 260
93
+ 91 26 260
94
+ 92 26 259
95
+ 93 26 258
96
+ 94 27 258
97
+ 95 27 257
98
+ 96 27 257
99
+ 97 27 256
100
+ 98 28 256
101
+ 99 28 256
102
+ 100 28 255
103
+ 101 28 255
104
+ 102 29 254
105
+ 103 29 253
106
+ 104 29 254
107
+ 105 30 255
108
+ 106 30 255
109
+ 107 30 254
110
+ 108 31 254
111
+ 109 31 253
112
+ 110 31 253
113
+ 111 31 252
114
+ 112 32 252
115
+ 113 32 252
116
+ 114 32 251
117
+ 115 32 250
118
+ 116 33 250
119
+ 117 33 249
120
+ 118 33 249
121
+ 119 33 249
122
+ 120 34 248
123
+ 121 34 249
124
+ 122 34 248
125
+ 123 35 248
126
+ 124 35 247
127
+ 125 35 247
128
+ 126 35 246
129
+ 127 36 246
130
+ 128 36 245
131
+ 129 36 245
132
+ 130 36 245
133
+ 131 37 244
134
+ 132 37 244
135
+ 133 37 244
136
+ 134 38 243
137
+ 135 38 243
138
+ 136 38 243
139
+ 137 38 242
140
+ 138 39 242
141
+ 139 39 241
142
+ 140 39 241
143
+ 141 39 241
144
+ 142 40 240
145
+ 143 40 240
146
+ 144 40 239
147
+ 145 40 239
148
+ 146 41 238
149
+ 147 41 238
150
+ 148 41 238
151
+ 149 42 238
152
+ 150 42 237
153
+ 151 42 237
154
+ 152 42 237
155
+ 153 43 237
156
+ 154 43 237
157
+ 155 43 237
158
+ 156 44 236
159
+ 157 44 236
160
+ 158 44 236
161
+ 159 44 236
162
+ 160 45 235
163
+ 161 45 235
164
+ 162 45 235
165
+ 163 46 234
166
+ 164 46 234
167
+ 165 46 234
168
+ 166 46 234
169
+ 167 47 233
170
+ 168 47 233
171
+ 169 47 233
172
+ 170 48 233
173
+ 171 48 233
174
+ 172 48 233
175
+ 173 49 233
176
+ 174 49 233
177
+ 175 49 233
178
+ 176 50 233
179
+ 177 50 232
180
+ 178 50 232
181
+ 179 50 232
182
+ 180 51 231
183
+ 181 51 231
184
+ 182 51 231
185
+ 183 52 230
186
+ 184 52 230
187
+ 185 52 229
188
+ 186 52 229
189
+ 187 53 229
190
+ 188 53 228
191
+ 189 53 228
192
+ 190 53 227
193
+ 191 54 227
194
+ 192 54 227
195
+ 193 54 226
196
+ 194 54 226
197
+ 195 55 226
198
+ 196 55 225
199
+ 197 55 225
200
+ 198 55 224
201
+ 199 56 224
202
+ 200 56 224
203
+ 201 56 223
204
+ 202 56 223
205
+ 203 57 223
206
+ 204 57 222
207
+ 205 57 222
208
+ 206 57 221
209
+ 207 58 221
210
+ 208 58 221
211
+ 209 58 220
212
+ 210 58 220
213
+ 211 59 220
214
+ 212 59 220
215
+ 213 60 220
216
+ 214 60 220
217
+ 215 60 219
218
+ 216 60 219
219
+ 217 61 219
220
+ 218 61 219
221
+ 219 61 218
222
+ 220 61 218
223
+ 221 62 218
224
+ 222 62 217
225
+ 223 62 217
226
+ 224 63 217
227
+ 225 63 216
228
+ 226 63 216
229
+ 227 63 216
230
+ 228 64 216
231
+ 229 64 215
232
+ 230 64 215
233
+ 231 64 215
234
+ 232 65 214
235
+ 233 65 214
236
+ 234 65 213
237
+ 235 65 213
238
+ 236 66 213
239
+ 237 66 213
240
+ 238 66 212
241
+ 239 67 212
242
+ 240 67 211
243
+ 241 67 211
244
+ 242 67 211
245
+ 243 68 210
246
+ 244 68 210
247
+ 245 68 210
248
+ 246 68 210
249
+ 247 69 209
250
+ 248 69 209
251
+ 249 69 209
252
+ 250 69 208
253
+ 251 70 208
254
+ 252 70 208
255
+ 253 70 207
256
+ 254 71 207
257
+ 255 71 207
258
+ 256 71 207
259
+ 257 72 207
260
+ 258 72 206
261
+ 259 72 206
262
+ 260 72 206
263
+ 261 73 206
264
+ 262 73 205
265
+ 263 73 205
266
+ 264 74 205
267
+ 265 74 204
268
+ 266 74 204
269
+ 267 74 204
270
+ 268 75 203
271
+ 269 75 203
272
+ 270 75 203
273
+ 271 75 203
274
+ 272 76 202
275
+ 273 76 202
276
+ 274 76 202
277
+ 275 76 201
278
+ 276 77 201
279
+ 277 77 201
280
+ 278 77 200
281
+ 279 77 200
282
+ 280 78 199
283
+ 281 78 199
284
+ 282 78 199
285
+ 283 78 198
286
+ 284 79 198
287
+ 285 79 198
288
+ 286 79 197
289
+ 287 79 197
290
+ 288 80 197
291
+ 289 80 196
292
+ 290 80 196
293
+ 291 80 196
294
+ 292 81 195
295
+ 293 81 195
296
+ 294 81 194
297
+ 295 81 194
298
+ 296 82 194
299
+ 297 82 193
300
+ 298 82 193
301
+ 299 82 193
302
+ 300 83 193
303
+ 301 83 192
304
+ 302 83 192
305
+ 303 83 192
306
+ 304 84 191
307
+ 305 84 191
308
+ 306 84 191
309
+ 307 85 191
310
+ 308 85 190
311
+ 309 85 190
312
+ 310 85 190
313
+ 311 86 189
314
+ 312 86 189
315
+ 313 86 189
316
+ 314 86 189
317
+ 315 87 188
318
+ 316 87 188
319
+ 317 87 188
320
+ 318 87 187
321
+ 319 88 187
322
+ 320 88 187
323
+ 321 88 186
324
+ 322 88 186
325
+ 323 89 186
326
+ 324 89 185
327
+ 325 89 185
328
+ 326 90 185
329
+ 327 90 184
330
+ 328 90 184
331
+ 329 90 184
332
+ 330 90 183
333
+ 331 91 183
334
+ 332 91 183
335
+ 333 91 183
336
+ 334 92 182
337
+ 335 92 182
338
+ 336 92 182
339
+ 337 93 182
340
+ 338 93 182
341
+ 339 93 182
342
+ 340 94 181
343
+ 341 94 181
344
+ 342 94 181
345
+ 343 94 180
346
+ 344 95 180
347
+ 345 95 180
348
+ 346 95 179
349
+ 347 95 179
350
+ 348 96 179
351
+ 349 96 179
352
+ 350 96 178
353
+ 351 97 178
354
+ 352 97 178
355
+ 353 97 178
356
+ 354 97 177
357
+ 355 98 177
358
+ 356 98 177
359
+ 357 98 176
360
+ 358 98 176
361
+ 359 99 176
362
+ 360 99 176
363
+ 361 99 175
364
+ 362 99 175
365
+ 363 100 175
366
+ 364 100 174
367
+ 365 100 174
368
+ 366 101 174
369
+ 367 101 173
370
+ 368 101 173
371
+ 369 101 173
372
+ 370 102 173
373
+ 371 102 172
374
+ 372 102 172
375
+ 373 102 172
376
+ 374 103 171
377
+ 375 103 171
378
+ 376 103 171
379
+ 377 103 170
380
+ 378 104 170
381
+ 379 104 170
382
+ 380 104 170
383
+ 381 104 169
384
+ 382 105 169
385
+ 383 105 169
386
+ 384 105 168
387
+ 385 106 168
388
+ 386 106 168
389
+ 387 106 168
390
+ 388 106 167
391
+ 389 107 167
392
+ 390 107 167
393
+ 391 107 166
394
+ 392 107 166
395
+ 393 108 166
396
+ 394 108 165
397
+ 395 108 165
398
+ 396 108 165
399
+ 397 109 165
400
+ 398 109 164
401
+ 399 109 164
402
+ 400 110 164
403
+ 401 110 164
404
+ 402 110 163
405
+ 403 110 163
406
+ 404 111 163
407
+ 405 111 163
408
+ 406 111 162
409
+ 407 112 162
410
+ 408 112 162
411
+ 409 113 162
412
+ 410 113 162
413
+ 411 113 162
414
+ 412 113 161
415
+ 413 114 161
416
+ 414 114 161
417
+ 415 114 160
418
+ 416 114 160
419
+ 417 115 160
420
+ 418 115 159
421
+ 419 115 159
422
+ 420 115 159
423
+ 421 116 159
424
+ 422 116 158
425
+ 423 116 158
426
+ 424 116 158
427
+ 425 117 157
428
+ 426 117 157
429
+ 427 117 157
430
+ 428 117 157
431
+ 429 118 156
432
+ 430 118 156
433
+ 431 118 156
434
+ 432 119 155
435
+ 433 119 155
436
+ 434 119 155
437
+ 435 119 155
438
+ 436 120 154
439
+ 437 120 154
440
+ 438 120 154
441
+ 439 120 153
442
+ 440 121 153
443
+ 441 121 153
444
+ 442 121 153
445
+ 443 121 152
446
+ 444 122 152
447
+ 445 122 152
448
+ 446 122 152
449
+ 447 123 151
450
+ 448 123 151
451
+ 449 123 151
452
+ 450 123 150
453
+ 451 124 150
454
+ 452 124 150
455
+ 453 124 149
456
+ 454 124 149
457
+ 455 125 149
458
+ 456 125 149
459
+ 457 125 148
460
+ 458 126 148
461
+ 459 126 148
462
+ 460 126 148
463
+ 461 127 148
464
+ 462 127 147
465
+ 463 127 147
466
+ 464 128 147
467
+ 465 128 147
468
+ 466 128 146
469
+ 467 129 146
470
+ 468 129 146
471
+ 469 129 146
472
+ 470 129 145
473
+ 471 130 145
474
+ 472 130 145
475
+ 473 130 144
476
+ 474 130 144
477
+ 475 131 144
478
+ 476 131 143
479
+ 477 131 143
480
+ 478 131 143
481
+ 479 132 143
482
+ 480 132 142
483
+ 481 132 142
484
+ 482 132 142
485
+ 483 133 141
486
+ 484 133 141
487
+ 485 133 141
488
+ 486 133 141
489
+ 487 134 140
490
+ 488 134 140
491
+ 489 134 140
492
+ 490 135 140
493
+ 491 135 139
494
+ 492 135 139
495
+ 493 135 139
496
+ 494 136 138
497
+ 495 136 138
498
+ 496 136 138
499
+ 497 137 138
500
+ 498 137 137
501
+ 499 137 137
502
+ 500 137 137
503
+ 501 138 136
504
+ 502 138 136
505
+ 503 138 136
506
+ 504 138 136
507
+ 505 139 135
508
+ 506 139 135
509
+ 507 139 135
510
+ 508 139 134
511
+ 509 140 134
512
+ 510 140 134
513
+ 511 140 134
514
+ 512 140 133
515
+ 513 141 133
516
+ 514 141 133
517
+ 515 141 132
518
+ 516 141 132
519
+ 517 142 132
520
+ 518 142 132
521
+ 519 142 131
522
+ 520 143 131
523
+ 521 143 131
524
+ 522 143 130
525
+ 523 143 130
526
+ 524 144 130
527
+ 525 144 130
528
+ 526 144 129
529
+ 527 145 129
530
+ 528 145 129
531
+ 529 145 129
532
+ 530 145 128
533
+ 531 146 128
534
+ 532 146 128
535
+ 533 146 127
536
+ 534 146 127
537
+ 535 147 127
538
+ 536 147 127
539
+ 537 148 127
540
+ 538 148 126
541
+ 539 148 126
542
+ 540 148 126
543
+ 541 149 126
544
+ 542 149 125
545
+ 543 149 125
546
+ 544 149 125
547
+ 545 150 124
548
+ 546 150 124
549
+ 547 150 124
550
+ 548 150 123
551
+ 549 151 123
552
+ 550 151 123
553
+ 551 151 123
554
+ 552 151 122
555
+ 553 152 122
556
+ 554 152 122
557
+ 555 152 121
558
+ 556 152 121
559
+ 557 153 121
560
+ 558 153 121
561
+ 559 153 120
562
+ 560 153 120
563
+ 561 154 120
564
+ 562 154 119
565
+ 563 154 119
566
+ 564 155 119
567
+ 565 155 119
568
+ 566 155 118
569
+ 567 155 118
570
+ 568 156 118
571
+ 569 156 117
572
+ 570 156 117
573
+ 571 156 117
574
+ 572 157 117
575
+ 573 157 116
576
+ 574 157 116
577
+ 575 157 116
578
+ 576 158 115
579
+ 577 158 115
580
+ 578 158 115
581
+ 579 158 115
582
+ 580 159 114
583
+ 581 159 114
584
+ 582 159 114
585
+ 583 160 114
586
+ 584 160 113
587
+ 585 160 113
588
+ 586 160 113
589
+ 587 161 112
590
+ 588 161 112
591
+ 589 161 112
592
+ 590 161 112
593
+ 591 162 111
594
+ 592 162 111
595
+ 593 162 111
596
+ 594 162 110
597
+ 595 163 110
598
+ 596 163 110
599
+ 597 163 110
600
+ 598 163 109
601
+ 599 164 109
602
+ 600 164 109
603
+ 601 164 108
604
+ 602 164 108
605
+ 603 165 108
606
+ 604 165 108
607
+ 605 165 107
608
+ 606 165 107
609
+ 607 166 107
610
+ 608 166 106
611
+ 609 166 106
612
+ 610 166 106
613
+ 611 167 106
614
+ 612 167 105
615
+ 613 167 105
616
+ 614 168 105
617
+ 615 168 104
618
+ 616 168 104
619
+ 617 168 104
620
+ 618 169 104
621
+ 619 169 103
622
+ 620 169 103
623
+ 621 169 103
624
+ 622 170 102
625
+ 623 170 102
626
+ 624 170 102
627
+ 625 170 102
628
+ 626 171 101
629
+ 627 171 101
630
+ 628 171 101
631
+ 629 172 101
632
+ 630 172 100
633
+ 631 172 100
634
+ 632 173 100
635
+ 633 173 100
636
+ 634 173 99
637
+ 635 174 99
638
+ 636 174 99
639
+ 637 174 99
640
+ 638 174 98
641
+ 639 175 98
642
+ 640 175 98
643
+ 641 175 98
644
+ 642 176 97
645
+ 643 176 97
646
+ 644 176 97
647
+ 645 176 96
648
+ 646 177 96
649
+ 647 177 96
650
+ 648 177 96
651
+ 649 177 95
652
+ 650 178 95
653
+ 651 178 95
654
+ 652 178 95
655
+ 653 179 94
656
+ 654 179 94
657
+ 655 179 94
658
+ 656 179 93
659
+ 657 180 93
660
+ 658 180 93
661
+ 659 180 93
662
+ 660 180 92
663
+ 661 181 92
664
+ 662 181 92
665
+ 663 181 91
666
+ 664 181 91
667
+ 665 182 91
668
+ 666 182 91
669
+ 667 182 90
670
+ 668 182 90
671
+ 669 183 90
672
+ 670 183 90
673
+ 671 183 89
674
+ 672 184 89
675
+ 673 184 89
676
+ 674 184 89
677
+ 675 185 88
678
+ 676 185 88
679
+ 677 185 88
680
+ 678 185 87
681
+ 679 186 87
682
+ 680 186 87
683
+ 681 186 87
684
+ 682 186 86
685
+ 683 187 86
686
+ 684 187 86
687
+ 685 187 85
688
+ 686 187 85
689
+ 687 188 85
690
+ 688 188 85
691
+ 689 188 84
692
+ 690 188 84
693
+ 691 189 84
694
+ 692 189 83
695
+ 693 189 83
696
+ 694 189 83
697
+ 695 190 83
698
+ 696 190 82
699
+ 697 190 82
700
+ 698 190 82
701
+ 699 191 81
702
+ 700 191 81
703
+ 701 191 81
704
+ 702 192 81
705
+ 703 192 80
706
+ 704 192 80
707
+ 705 192 80
708
+ 706 193 80
709
+ 707 193 79
710
+ 708 193 79
711
+ 709 193 79
712
+ 710 194 78
713
+ 711 194 78
714
+ 712 194 78
715
+ 713 194 78
716
+ 714 195 77
717
+ 715 195 77
718
+ 716 195 77
719
+ 717 195 76
720
+ 718 196 76
721
+ 719 196 76
722
+ 720 196 76
723
+ 721 197 75
724
+ 722 197 75
725
+ 723 197 75
726
+ 724 197 75
727
+ 725 198 74
728
+ 726 198 74
729
+ 727 198 74
730
+ 728 199 74
731
+ 729 199 73
732
+ 730 199 73
733
+ 731 200 73
734
+ 732 200 72
735
+ 733 200 72
736
+ 734 201 72
737
+ 735 201 72
738
+ 736 201 71
739
+ 737 201 71
740
+ 738 202 71
741
+ 739 202 71
742
+ 740 202 70
743
+ 741 202 70
744
+ 742 203 70
745
+ 743 203 70
746
+ 744 203 69
747
+ 745 203 69
748
+ 746 204 69
749
+ 747 204 68
750
+ 748 204 68
751
+ 749 204 68
752
+ 750 205 68
753
+ 751 205 67
754
+ 752 205 67
755
+ 753 206 67
756
+ 754 206 66
757
+ 755 206 66
758
+ 756 206 66
759
+ 757 207 66
760
+ 758 207 65
761
+ 759 207 65
762
+ 760 207 65
763
+ 761 208 65
764
+ 762 208 64
765
+ 763 208 64
766
+ 764 209 64
767
+ 765 209 63
768
+ 766 209 63
769
+ 767 209 63
770
+ 768 210 63
771
+ 769 210 62
772
+ 770 210 62
773
+ 771 211 62
774
+ 772 211 62
775
+ 773 211 61
776
+ 774 211 61
777
+ 775 212 61
778
+ 776 212 60
779
+ 777 212 60
780
+ 778 212 60
781
+ 779 213 60
782
+ 780 213 59
783
+ 781 213 59
784
+ 782 213 59
785
+ 783 214 59
786
+ 784 214 58
787
+ 785 214 58
788
+ 786 215 58
789
+ 787 215 57
790
+ 788 215 57
791
+ 789 215 57
792
+ 790 216 57
793
+ 791 216 56
794
+ 792 216 56
795
+ 793 216 56
796
+ 794 217 55
797
+ 795 217 55
798
+ 796 217 55
799
+ 797 217 55
800
+ 798 218 54
801
+ 799 218 54
802
+ 800 218 54
803
+ 801 218 54
804
+ 802 219 53
805
+ 803 219 53
806
+ 804 219 53
807
+ 805 219 52
808
+ 806 220 52
809
+ 807 220 52
810
+ 808 220 52
811
+ 809 220 51
812
+ 810 221 51
813
+ 811 221 51
814
+ 812 221 50
815
+ 813 221 50
816
+ 814 222 50
817
+ 815 222 50
818
+ 816 222 49
819
+ 817 223 49
820
+ 818 223 49
821
+ 819 223 49
822
+ 820 224 48
823
+ 821 224 48
824
+ 822 224 48
825
+ 823 224 48
826
+ 824 225 47
827
+ 825 225 47
828
+ 826 225 47
829
+ 827 226 46
830
+ 828 226 46
831
+ 829 226 46
832
+ 830 226 46
833
+ 831 227 45
834
+ 832 227 45
835
+ 833 227 45
836
+ 834 227 45
837
+ 835 228 44
838
+ 836 228 44
839
+ 837 228 44
840
+ 838 228 43
841
+ 839 229 43
842
+ 840 229 43
843
+ 841 229 43
844
+ 842 229 42
845
+ 843 230 42
846
+ 844 230 42
847
+ 845 230 42
848
+ 846 230 41
849
+ 847 231 41
850
+ 848 231 41
851
+ 849 231 40
852
+ 850 232 40
853
+ 851 232 40
854
+ 852 232 40
855
+ 853 232 39
856
+ 854 233 39
857
+ 855 233 39
858
+ 856 233 38
859
+ 857 233 38
860
+ 858 234 38
861
+ 859 234 38
862
+ 860 234 37
863
+ 861 235 37
864
+ 862 235 37
865
+ 863 235 37
866
+ 864 236 36
867
+ 865 236 36
868
+ 866 236 36
869
+ 867 236 36
870
+ 868 237 35
871
+ 869 237 35
872
+ 870 237 35
873
+ 871 237 34
874
+ 872 237 34
875
+ 873 238 34
876
+ 874 238 34
877
+ 875 238 33
878
+ 876 239 33
879
+ 877 239 33
880
+ 878 239 32
881
+ 879 239 32
882
+ 880 239 32
883
+ 881 240 32
884
+ 882 240 31
885
+ 883 240 31
886
+ 884 240 31
887
+ 885 241 31
888
+ 886 241 30
889
+ 887 241 30
890
+ 888 242 30
891
+ 889 242 29
892
+ 890 242 29
893
+ 891 242 29
894
+ 892 243 29
895
+ 893 243 28
896
+ 894 243 28
897
+ 895 243 28
898
+ 896 244 28
899
+ 897 244 27
900
+ 898 244 27
901
+ 899 244 27
902
+ 900 245 26
903
+ 901 245 26
904
+ 902 245 26
905
+ 903 245 26
906
+ 904 246 25
907
+ 905 246 25
908
+ 906 246 25
909
+ 907 246 25
910
+ 908 247 24
911
+ 909 247 24
912
+ 910 247 24
913
+ 911 248 23
914
+ 912 248 23
915
+ 913 248 23
916
+ 914 248 23
917
+ 915 249 22
918
+ 916 249 22
919
+ 917 249 22
920
+ 918 249 22
921
+ 919 250 21
922
+ 920 250 21
923
+ 921 250 21
924
+ 922 251 20
925
+ 923 251 20
926
+ 924 251 20
927
+ 925 251 20
928
+ 926 251 19
929
+ 927 252 19
930
+ 928 252 19
931
+ 929 252 19
932
+ 930 252 18
933
+ 931 253 18
934
+ 932 253 18
935
+ 933 253 17
936
+ 934 254 17
937
+ 935 254 17
938
+ 936 254 17
939
+ 937 254 16
940
+ 938 255 16
941
+ 939 255 16
942
+ 940 255 16
943
+ 941 255 15
944
+ 942 256 15
945
+ 943 256 15
946
+ 944 256 14
947
+ 945 256 14
948
+ 946 257 14
949
+ 947 257 14
950
+ 948 257 13
951
+ 949 257 13
952
+ 950 258 13
953
+ 951 258 13
954
+ 952 258 12
955
+ 953 258 12
956
+ 954 259 12
957
+ 955 259 11
958
+ 956 259 11
959
+ 957 260 11
960
+ 958 260 11
961
+ 959 260 10
962
+ 960 260 10
963
+ 961 261 10
964
+ 962 261 10
965
+ 963 261 9
966
+ 964 261 9
967
+ 965 262 9
968
+ 966 262 8
969
+ 967 262 8
970
+ 968 262 8
971
+ 969 263 8
972
+ 970 263 7
973
+ 971 263 7
974
+ 972 263 7
975
+ 973 264 7
976
+ 974 264 6
977
+ 975 264 6
978
+ 976 264 6
979
+ 977 265 5
980
+ 978 265 5
981
+ 979 265 5
982
+ 980 265 5
983
+ 981 266 4
984
+ 982 266 4
985
+ 983 266 4
986
+ 984 266 4
987
+ 985 267 3
988
+ 986 267 3
989
+ 987 267 3
990
+ 988 267 2
991
+ 989 268 2
992
+ 990 268 2
993
+ 991 268 2
994
+ 992 268 1
995
+ 993 269 1
996
+ 994 269 1
997
+ 995 269 1
998
+ 996 270 0
999
+ 997 270 0
1000
+ 998 270 0
1001
+ 999 270 0
requirement.txt CHANGED
@@ -1,7 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  numpy==1.25.2
 
2
  pandas==2.0.3
 
 
 
 
 
 
 
 
 
 
 
 
3
  python-dateutil==2.8.2
4
  pytz==2023.3
 
 
 
 
5
  six==1.16.0
 
 
 
 
 
6
  tzdata==2023.3
7
- -e .
 
 
1
+ appnope==0.1.3
2
+ asttokens==2.4.0
3
+ backcall==0.2.0
4
+ catboost==1.2.1
5
+ comm==0.1.4
6
+ contourpy==1.1.0
7
+ cycler==0.11.0
8
+ debugpy==1.6.7.post1
9
+ decorator==5.1.1
10
+ exceptiongroup==1.1.3
11
+ executing==1.2.0
12
+ fonttools==4.42.1
13
+ graphviz==0.20.1
14
+ ipykernel==6.25.2
15
+ ipython==8.15.0
16
+ jedi==0.19.0
17
+ joblib==1.3.2
18
+ jupyter_client==8.3.1
19
+ jupyter_core==5.3.1
20
+ kiwisolver==1.4.5
21
+ matplotlib==3.7.2
22
+ matplotlib-inline==0.1.6
23
+ -e git+https://github.com/SinghJagpreet096/mlops@b7a4d5146929c485a98e014a495fd15b866a6528#egg=mlops
24
+ nest-asyncio==1.5.7
25
  numpy==1.25.2
26
+ packaging==23.1
27
  pandas==2.0.3
28
+ parso==0.8.3
29
+ pexpect==4.8.0
30
+ pickleshare==0.7.5
31
+ Pillow==10.0.0
32
+ platformdirs==3.10.0
33
+ plotly==5.16.1
34
+ prompt-toolkit==3.0.39
35
+ psutil==5.9.5
36
+ ptyprocess==0.7.0
37
+ pure-eval==0.2.2
38
+ Pygments==2.16.1
39
+ pyparsing==3.0.9
40
  python-dateutil==2.8.2
41
  pytz==2023.3
42
+ pyzmq==25.1.1
43
+ scikit-learn==1.3.0
44
+ scipy==1.11.2
45
+ seaborn==0.12.2
46
  six==1.16.0
47
+ stack-data==0.6.2
48
+ tenacity==8.2.3
49
+ threadpoolctl==3.2.0
50
+ tornado==6.3.3
51
+ traitlets==5.9.0
52
  tzdata==2023.3
53
+ wcwidth==0.2.6
54
+ xgboost==1.7.6