Spaces:
Sleeping
Sleeping
import os | |
import logging | |
# from dotenv import load_dotenv | |
#export HNSWLIB_NO_NATIVE = 1 | |
from langchain_community.document_loaders import PyPDFDirectoryLoader, TextLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.memory import ChatMessageHistory, ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.chat_models import ChatOpenAI | |
import chainlit as cl | |
import openai | |
from src.config import Config | |
from src.utils import get_docsearch, get_source | |
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
# embeddings = OpenAIEmbeddings() | |
# load_dotenv() | |
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
welcome_message = """Welcome to Your Document Reader! | |
Here to assist you with any questions you have about a file. You can upload a file and ask me questions related to its content. Here's how you can get started: | |
1. Click on the file upload button to share a document or image. | |
2. Once the file is uploaded, feel free to ask me any questions about its content. | |
3. I'll do my best to provide information or insights based on the uploaded file. | |
If you need help or have any specific queries, type "help" at any time. | |
Let's get the conversation started! """ | |
async def start(): | |
await cl.Message("YOU ARE IN").send() | |
files = None | |
files = await cl.AskFileMessage( | |
content=welcome_message, | |
accept=["text/plain", "application/pdf"], | |
max_size_mb=Config.max_size_mb, | |
timeout=Config.timeout | |
).send() | |
logging.info("file uploaded") | |
file = files[0] | |
msg = cl.Message(content=f"Processing {file.name}") | |
await msg.send() | |
logging.info("file processing") | |
docsearch = await cl.make_async(get_docsearch)(file) | |
message_history = ChatMessageHistory() | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key="answer", | |
chat_memory=message_history, | |
return_messages=True | |
) | |
## create chain that uses chroma vector store | |
chain = ConversationalRetrievalChain.from_llm( | |
ChatOpenAI(model_name=Config.model_name,temperature=Config.temperature, streaming=Config.streaming), | |
chain_type=Config.chain_type, | |
retriever=docsearch.as_retriever(), | |
memory=memory, | |
return_source_documents=True, | |
) | |
msg.content = f"Processing {file.name} completed. Start asking questions!" | |
await msg.update() | |
logging.info("file processed success") | |
cl.user_session.set("chain",chain) | |
logging.info("saved chain in currrent session") | |
async def main(message: cl.Message): | |
## get chain | |
chain = cl.user_session.get("chain") | |
logging.info("loaded chain") | |
cb = cl.AsyncLangchainCallbackHandler() | |
logging.info("loaded callbacks") | |
res = await chain.acall(message.content, callbacks=[cb]) | |
answer = res["answer"] | |
source_documents = res["source_documents"] | |
text_elements = get_source(answer, source_documents) | |
await cl.Message(content=answer, elements=text_elements).send() | |