Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pinecone
|
2 |
+
from datasets import load_dataset
|
3 |
+
import requests
|
4 |
+
from transformers import BertTokenizerFast
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
import transformers.models.clip.image_processing_clip
|
7 |
+
import torch
|
8 |
+
import gradio as gr
|
9 |
+
from deep_translator import GoogleTranslator
|
10 |
+
import shutil
|
11 |
+
from PIL import Image
|
12 |
+
import os
|
13 |
+
|
14 |
+
with open('pinecone_text.py' ,'w') as fb:
|
15 |
+
fb.write(requests.get('https://storage.googleapis.com/gareth-pinecone-datasets/pinecone_text.py').text)
|
16 |
+
import pinecone_text
|
17 |
+
|
18 |
+
|
19 |
+
# init connection to pinecone
|
20 |
+
pinecone.init(
|
21 |
+
api_key="0898750a-ee05-44f1-ac8a-98c5fef92f4a", # app.pinecone.io
|
22 |
+
environment="asia-southeast1-gcp-free" # find next to api key
|
23 |
+
)
|
24 |
+
|
25 |
+
index_name = "hybrid-image-search"
|
26 |
+
index = pinecone.GRPCIndex(index_name)
|
27 |
+
|
28 |
+
# load the dataset from huggingface datasets hub
|
29 |
+
fashion = load_dataset(
|
30 |
+
"ashraq/fashion-product-images-small",
|
31 |
+
split='train[:1000]'
|
32 |
+
)
|
33 |
+
|
34 |
+
images = fashion["image"]
|
35 |
+
metadata = fashion.remove_columns("image")
|
36 |
+
|
37 |
+
# load bert tokenizer from huggingface
|
38 |
+
tokenizer = BertTokenizerFast.from_pretrained(
|
39 |
+
'bert-base-uncased'
|
40 |
+
)
|
41 |
+
|
42 |
+
def tokenize_func(text):
|
43 |
+
token_ids = tokenizer(
|
44 |
+
text,
|
45 |
+
add_special_tokens=False
|
46 |
+
)['input_ids']
|
47 |
+
return tokenizer.convert_ids_to_tokens(token_ids)
|
48 |
+
|
49 |
+
bm25 = pinecone_text.BM25(tokenize_func)
|
50 |
+
bm25.fit(metadata['productDisplayName'])
|
51 |
+
|
52 |
+
|
53 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
54 |
+
|
55 |
+
# load a CLIP model from huggingface
|
56 |
+
model = SentenceTransformer(
|
57 |
+
'sentence-transformers/clip-ViT-B-32',
|
58 |
+
device=device
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def hybrid_scale(dense, sparse, alpha: float):
|
63 |
+
if alpha < 0 or alpha > 1:
|
64 |
+
raise ValueError("Alpha must be between 0 and 1")
|
65 |
+
# scale sparse and dense vectors to create hybrid search vecs
|
66 |
+
hsparse = {
|
67 |
+
'indices': sparse['indices'],
|
68 |
+
'values': [v * (1 - alpha) for v in sparse['values']]
|
69 |
+
}
|
70 |
+
hdense = [v * alpha for v in dense]
|
71 |
+
return hdense, hsparse
|
72 |
+
|
73 |
+
|
74 |
+
def text_to_image(query, alpha, k_results):
|
75 |
+
sparse = bm25.transform_query(query)
|
76 |
+
dense = model.encode(query).tolist()
|
77 |
+
|
78 |
+
# scale sparse and dense vectors
|
79 |
+
hdense, hsparse = hybrid_scale(dense, sparse, alpha=alpha)
|
80 |
+
|
81 |
+
# search
|
82 |
+
result = index.query(
|
83 |
+
top_k=k_results,
|
84 |
+
vector=hdense,
|
85 |
+
sparse_vector=hsparse,
|
86 |
+
include_metadata=True
|
87 |
+
)
|
88 |
+
# used returned product ids to get images
|
89 |
+
imgs = [images[int(r["id"])] for r in result["matches"]]
|
90 |
+
|
91 |
+
description = []
|
92 |
+
for x in result["matches"]:
|
93 |
+
description.append( x["metadata"]['productDisplayName'] )
|
94 |
+
|
95 |
+
return imgs, description
|
96 |
+
|
97 |
+
|
98 |
+
def img_to_file_list(imgs):
|
99 |
+
path = "searches"
|
100 |
+
sub_path = './' + path + '/' + 'search' + '_' + str(counter["dir_num"])
|
101 |
+
|
102 |
+
# Check whether the specified path exists or not
|
103 |
+
isExist = os.path.exists('.'+'/'+path)
|
104 |
+
|
105 |
+
if not isExist:
|
106 |
+
print("Directory does not exists")
|
107 |
+
# Create a new directory because it does not exist
|
108 |
+
os.makedirs('.'+'/'+path, exist_ok = True)
|
109 |
+
print("The new directory is created!")
|
110 |
+
|
111 |
+
# Check whether the specified path exists or not
|
112 |
+
isExist = os.path.exists(sub_path)
|
113 |
+
|
114 |
+
if isExist:
|
115 |
+
shutil.rmtree(sub_path)
|
116 |
+
|
117 |
+
os.makedirs(sub_path, exist_ok = True)
|
118 |
+
|
119 |
+
img_files = {'search'+str(counter["dir_num"]):[]}
|
120 |
+
i = 0
|
121 |
+
|
122 |
+
for img in imgs:
|
123 |
+
img.save(sub_path+"/img_" + str(i) + ".png","PNG")
|
124 |
+
img_files['search'+str(counter["dir_num"])].append(sub_path + '/' + 'img_'+ str(i) + ".png")
|
125 |
+
i+=1
|
126 |
+
|
127 |
+
counter["dir_num"]+=1
|
128 |
+
|
129 |
+
return img_files['search'+str(counter["dir_num"]-1)]
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
def hybrid_scale(dense, sparse, alpha: float):
|
134 |
+
if alpha < 0 or alpha > 1:
|
135 |
+
raise ValueError("Alpha must be between 0 and 1")
|
136 |
+
# scale sparse and dense vectors to create hybrid search vecs
|
137 |
+
hsparse = {
|
138 |
+
'indices': sparse['indices'],
|
139 |
+
'values': [v * (1 - alpha) for v in sparse['values']]
|
140 |
+
}
|
141 |
+
hdense = [v * alpha for v in dense]
|
142 |
+
return hdense, hsparse
|
143 |
+
|
144 |
+
|
145 |
+
def text_to_image(query, alpha, k_results):
|
146 |
+
sparse = bm25.transform_query(query)
|
147 |
+
dense = model.encode(query).tolist()
|
148 |
+
|
149 |
+
# scale sparse and dense vectors
|
150 |
+
hdense, hsparse = hybrid_scale(dense, sparse, alpha=alpha)
|
151 |
+
|
152 |
+
# search
|
153 |
+
result = index.query(
|
154 |
+
top_k=k_results,
|
155 |
+
vector=hdense,
|
156 |
+
sparse_vector=hsparse,
|
157 |
+
include_metadata=True
|
158 |
+
)
|
159 |
+
# used returned product ids to get images
|
160 |
+
imgs = [images[int(r["id"])] for r in result["matches"]]
|
161 |
+
|
162 |
+
description = []
|
163 |
+
for x in result["matches"]:
|
164 |
+
description.append( x["metadata"]['productDisplayName'] )
|
165 |
+
|
166 |
+
return imgs, description
|
167 |
+
|
168 |
+
|
169 |
+
def img_to_file_list(imgs):
|
170 |
+
path = "searches"
|
171 |
+
sub_path = './' + path + '/' + 'search' + '_' + str(counter["dir_num"])
|
172 |
+
|
173 |
+
# Check whether the specified path exists or not
|
174 |
+
isExist = os.path.exists('.'+'/'+path)
|
175 |
+
|
176 |
+
if not isExist:
|
177 |
+
print("Directory does not exists")
|
178 |
+
# Create a new directory because it does not exist
|
179 |
+
os.makedirs('.'+'/'+path, exist_ok = True)
|
180 |
+
print("The new directory is created!")
|
181 |
+
|
182 |
+
# Check whether the specified path exists or not
|
183 |
+
isExist = os.path.exists(sub_path)
|
184 |
+
|
185 |
+
if isExist:
|
186 |
+
shutil.rmtree(sub_path)
|
187 |
+
|
188 |
+
os.makedirs(sub_path, exist_ok = True)
|
189 |
+
|
190 |
+
img_files = {'search'+str(counter["dir_num"]):[]}
|
191 |
+
i = 0
|
192 |
+
|
193 |
+
for img in imgs:
|
194 |
+
img.save(sub_path+"/img_" + str(i) + ".png","PNG")
|
195 |
+
img_files['search'+str(counter["dir_num"])].append(sub_path + '/' + 'img_'+ str(i) + ".png")
|
196 |
+
i+=1
|
197 |
+
|
198 |
+
counter["dir_num"]+=1
|
199 |
+
|
200 |
+
return img_files['search'+str(counter["dir_num"]-1)]
|