Spaces:
Running
Running
import pinecone | |
# init connection to pinecone | |
pinecone.init( | |
api_key="0898750a-ee05-44f1-ac8a-98c5fef92f4a", # app.pinecone.io | |
environment="asia-southeast1-gcp-free" # find next to api key | |
) | |
# index_name = "hybrid-image-search" | |
# if index_name not in pinecone.list_indexes(): | |
# # create the index | |
# pinecone.create_index( | |
# index_name, | |
# dimension=512, | |
# metric="dotproduct", | |
# pod_type="s1" | |
# ) | |
index_name = pinecone.list_indexes()[0] | |
print(index_name) | |
index = pinecone.GRPCIndex(index_name) | |
from datasets import load_dataset | |
# load the dataset from huggingface datasets hub | |
fashion = load_dataset( | |
"ashraq/fashion-product-images-small", | |
split='train[:1000]' | |
) | |
images = fashion["image"] | |
metadata = fashion.remove_columns("image") | |
images[900] | |
import pandas as pd | |
metadata = metadata.to_pandas() | |
filtered = metadata[ (metadata['gender'] == 'Men') & (metadata['articleType'] == 'Jeans')& (metadata['baseColour'] == 'Blue')] | |
print(len(filtered)) | |
metadata.head() | |
import requests | |
with open('pinecone_text.py' ,'w') as fb: | |
fb.write(requests.get('https://storage.googleapis.com/gareth-pinecone-datasets/pinecone_text.py').text) | |
from transformers import BertTokenizerFast | |
import pinecone_text | |
# load bert tokenizer from huggingface | |
tokenizer = BertTokenizerFast.from_pretrained( | |
'bert-base-uncased' | |
) | |
def tokenize_func(text): | |
token_ids = tokenizer( | |
text, | |
add_special_tokens=False | |
)['input_ids'] | |
return tokenizer.convert_ids_to_tokens(token_ids) | |
bm25 = pinecone_text.BM25(tokenize_func) | |
tokenize_func('Turtle Check Men Navy Blue Shirt') | |
bm25.fit(metadata['productDisplayName']) | |
display(metadata['productDisplayName'][0]) | |
bm25.transform_query(metadata['productDisplayName'][0]) | |
from sentence_transformers import SentenceTransformer | |
import transformers.models.clip.image_processing_clip | |
import torch | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# load a CLIP model from huggingface | |
model = SentenceTransformer( | |
'sentence-transformers/clip-ViT-B-32', | |
device=device | |
) | |
model | |
dense_vec = model.encode([metadata['productDisplayName'][0]]) | |
dense_vec.shape | |
#len(fashion) | |
"""##Encode the dataset to index | |
""" | |
# from tqdm.auto import tqdm | |
# batch_size = 200 | |
# for i in tqdm(range(0, len(fashion), batch_size)): | |
# # find end of batch | |
# i_end = min(i+batch_size, len(fashion)) | |
# # extract metadata batch | |
# meta_batch = metadata.iloc[i:i_end] | |
# meta_dict = meta_batch.to_dict(orient="records") | |
# # concatinate all metadata field except for id and year to form a single string | |
# meta_batch = [" ".join(x) for x in meta_batch.loc[:, ~meta_batch.columns.isin(['id', 'year'])].values.tolist()] | |
# # extract image batch | |
# img_batch = images[i:i_end] | |
# # create sparse BM25 vectors | |
# sparse_embeds = [bm25.transform_doc(text) for text in meta_batch] | |
# # create dense vectors | |
# dense_embeds = model.encode(img_batch).tolist() | |
# # create unique IDs | |
# ids = [str(x) for x in range(i, i_end)] | |
# upserts = [] | |
# # loop through the data and create dictionaries for uploading documents to pinecone index | |
# for _id, sparse, dense, meta in zip(ids, sparse_embeds, dense_embeds, meta_dict): | |
# upserts.append({ | |
# 'id': _id, | |
# 'sparse_values': sparse, | |
# 'values': dense, | |
# 'metadata': meta | |
# }) | |
# # upload the documents to the new hybrid index | |
# index.upsert(upserts) | |
# show index description after uploading the documents | |
index.describe_index_stats() | |
from IPython.core.display import HTML | |
from io import BytesIO | |
from base64 import b64encode | |
import pinecone_text | |
# function to display product images | |
def display_result(image_batch): | |
figures = [] | |
for img in image_batch: | |
b = BytesIO() | |
img.save(b, format='png') | |
figures.append(f''' | |
<figure style="margin: 5px !important;"> | |
<img src="data:image/png;base64,{b64encode(b.getvalue()).decode('utf-8')}" style="width: 90px; height: 120px" > | |
</figure> | |
''') | |
return HTML(data=f''' | |
<div style="display: flex; flex-flow: row wrap; text-align: center;"> | |
{''.join(figures)} | |
</div> | |
''') | |
def hybrid_scale(dense, sparse, alpha: float): | |
"""Hybrid vector scaling using a convex combination | |
alpha * dense + (1 - alpha) * sparse | |
Args: | |
dense: Array of floats representing | |
sparse: a dict of `indices` and `values` | |
alpha: float between 0 and 1 where 0 == sparse only | |
and 1 == dense only | |
""" | |
if alpha < 0 or alpha > 1: | |
raise ValueError("Alpha must be between 0 and 1") | |
# scale sparse and dense vectors to create hybrid search vecs | |
hsparse = { | |
'indices': sparse['indices'], | |
'values': [v * (1 - alpha) for v in sparse['values']] | |
} | |
hdense = [v * alpha for v in dense] | |
return hdense, hsparse | |
def text_to_image(query, alpha, k_results): | |
sparse = bm25.transform_query(query) | |
dense = model.encode(query).tolist() | |
# scale sparse and dense vectors | |
hdense, hsparse = hybrid_scale(dense, sparse, alpha=alpha) | |
# search | |
result = index.query( | |
top_k=k_results, | |
vector=hdense, | |
sparse_vector=hsparse, | |
include_metadata=True | |
) | |
# used returned product ids to get images | |
imgs = [images[int(r["id"])] for r in result["matches"]] | |
description = [] | |
for x in result["matches"]: | |
description.append( x["metadata"]['productDisplayName'] ) | |
return imgs, description | |
def show_dir_content(): | |
for dirname, _, filenames in os.walk('./'): | |
for filename in filenames: | |
print(os.path.join(dirname, filename)) | |
import shutil | |
from PIL import Image | |
import os | |
counter = {"dir_num": 1} | |
img_files = {'x':[]} | |
def img_to_file_list(imgs): | |
os.chdir('/content') | |
path = "searches" | |
sub_path = 'content/' + path + '/' + 'search' + '_' + str(counter["dir_num"]) | |
# Check whether the specified path exists or not | |
isExist = os.path.exists('content'+'/'+path) | |
if not isExist: | |
print("Directory does not exists") | |
# Create a new directory because it does not exist | |
os.makedirs('content'+'/'+path, exist_ok = True) | |
print("The new directory is created!") | |
#else: | |
# os.chdir('/content/'+path) | |
print("Subdir ->The Current working directory is: {0}".format(os.getcwd())) | |
# Check whether the specified path exists or not | |
isExist = os.path.exists(sub_path) | |
if isExist: | |
shutil.rmtree(sub_path) | |
os.makedirs(sub_path, exist_ok = True) | |
img_files = {'search'+str(counter["dir_num"]):[]} | |
i = 0 | |
curr_dir = os.getcwd() | |
for img in imgs: | |
img.save(sub_path+"/img_" + str(i) + ".png","PNG") | |
img_files['search'+str(counter["dir_num"])].append(sub_path + '/' + 'img_'+ str(i) + ".png") | |
i+=1 | |
counter["dir_num"]+=1 | |
return img_files['search'+str(counter["dir_num"]-1)] | |
#print(os.getcwd()) | |
# os.chdir('/content/searches') | |
# print("The Current working directory is: {0}".format(os.getcwd())) | |
# show_dir_content() | |
# imgs2, descr = text_to_image('blue jeans for women', 0.5, 4) | |
# print("The Current working directory is: {0}".format(os.getcwd())) | |
# show_dir_content() | |
# img_files = img_to_file_list(imgs2) | |
# display(img_files) | |
# print("The Current working directory is: {0}".format(os.getcwd())) | |
# show_dir_content() | |
# shutil.rmtree('/content/searches') | |
# #shutil.rmtree('./content/searches') | |
# #print("The Current working directory is: {0}".format(os.getcwd())) | |
# #show_dir_content() | |
# #counter, img_files = img_to_file_list(imgs1, counter, img_files) | |
# #display(img_files) | |
# #counter, img_files = img_to_file_list(imgs2) | |
import gradio as gr | |
from deep_translator import GoogleTranslator | |
css = ''' | |
.gallery img { | |
width: 45px; | |
height: 60px; | |
object-fit: contain; | |
} | |
''' | |
counter = {"dir_num": 1} | |
img_files = {'x':[]} | |
def fake_gan(text, alpha): | |
text_eng=GoogleTranslator(source='iw', target='en').translate(text) | |
imgs, descr = text_to_image(text_eng, alpha, 3) | |
img_files = img_to_file_list(imgs) | |
return img_files | |
def fake_text(text, alpha): | |
en_text = GoogleTranslator(source='iw', target='en').translate(text) | |
img , descr = text_to_image(en_text, alpha, 3) | |
return descr | |
with gr.Blocks() as demo: | |
with gr.Row():#variant="compact"): | |
text = gr.Textbox( | |
value = "ื'ืื ืก ืืืื ืืืืจืื", | |
label="Enter the product characteristics:", | |
#show_label=True, | |
#max_lines=1, | |
#placeholder="Enter your prompt", | |
) | |
alpha = gr.Slider(0, 1, step=0.01, label='Choose alpha:', value = 0.05) | |
with gr.Row(): | |
btn = gr.Button("Generate image") | |
with gr.Row(): | |
gallery = gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
).style(columns=[8], rows=[2], object_fit='scale-down', height='auto') | |
with gr.Row(): | |
selected = gr.Textbox(label="Product description: ", interactive=False, value = "-----> Description <-------",placeholder="Selected") | |
btn.click(fake_gan, inputs=[text, alpha], outputs=gallery) | |
def get_select_index(evt: gr.SelectData,text,alpha): | |
print(evt.index) | |
eng_text = fake_text(text, alpha)[evt.index] | |
heb_text = GoogleTranslator(source='en', target='iw').translate(eng_text) | |
return heb_text | |
#gallery.select( get_select_index, None, selected ) | |
gallery.select( fn=get_select_index, inputs=[text,alpha], outputs=selected ) | |
demo.launch() | |
#shutil.rmtree('/content/searches') | |