Spaces:
Running
Running
import pinecone | |
# init connection to pinecone | |
pinecone.init( | |
api_key="0898750a-ee05-44f1-ac8a-98c5fef92f4a", # app.pinecone.io | |
environment="asia-southeast1-gcp-free" # find next to api key | |
) | |
index_name = "hybrid-image-search" | |
index = pinecone.GRPCIndex(index_name) | |
from datasets import load_dataset | |
# load the dataset from huggingface datasets hub | |
fashion = load_dataset( | |
"ashraq/fashion-product-images-small", | |
split='train[:1000]' | |
) | |
images = fashion["image"] | |
metadata = fashion.remove_columns("image") | |
import requests | |
with open('pinecone_text.py' ,'w') as fb: | |
fb.write(requests.get('https://storage.googleapis.com/gareth-pinecone-datasets/pinecone_text.py').text) | |
from transformers import BertTokenizerFast | |
import pinecone_text | |
# load bert tokenizer from huggingface | |
tokenizer = BertTokenizerFast.from_pretrained( | |
'bert-base-uncased' | |
) | |
def tokenize_func(text): | |
token_ids = tokenizer( | |
text, | |
add_special_tokens=False | |
)['input_ids'] | |
return tokenizer.convert_ids_to_tokens(token_ids) | |
bm25 = pinecone_text.BM25(tokenize_func) | |
bm25.fit(metadata['productDisplayName']) | |
from sentence_transformers import SentenceTransformer | |
import transformers.models.clip.image_processing_clip | |
import torch | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# load a CLIP model from huggingface | |
model = SentenceTransformer( | |
'sentence-transformers/clip-ViT-B-32', | |
device=device | |
) | |
def hybrid_scale(dense, sparse, alpha: float): | |
if alpha < 0 or alpha > 1: | |
raise ValueError("Alpha must be between 0 and 1") | |
# scale sparse and dense vectors to create hybrid search vecs | |
hsparse = { | |
'indices': sparse['indices'], | |
'values': [v * (1 - alpha) for v in sparse['values']] | |
} | |
hdense = [v * alpha for v in dense] | |
return hdense, hsparse | |
def text_to_image(query, alpha, k_results): | |
sparse = bm25.transform_query(query) | |
dense = model.encode(query).tolist() | |
# scale sparse and dense vectors | |
hdense, hsparse = hybrid_scale(dense, sparse, alpha=alpha) | |
# search | |
result = index.query( | |
top_k=k_results, | |
vector=hdense, | |
sparse_vector=hsparse, | |
include_metadata=True | |
) | |
# used returned product ids to get images | |
imgs = [images[int(r["id"])] for r in result["matches"]] | |
description = [] | |
for x in result["matches"]: | |
description.append( x["metadata"]['productDisplayName'] ) | |
return imgs, description | |
counter = {"dir_num": 1} | |
img_files = {'x':[]} | |
def img_to_file_list(imgs): | |
path = "searches" | |
sub_path = './' + path + '/' + 'search' + '_' + str(counter["dir_num"]) | |
# Check whether the specified path exists or not | |
isExist = os.path.exists('.'+'/'+path) | |
if not isExist: | |
print("Directory does not exists") | |
# Create a new directory because it does not exist | |
os.makedirs('.'+'/'+path, exist_ok = True) | |
print("The new directory is created!") | |
# Check whether the specified path exists or not | |
isExist = os.path.exists(sub_path) | |
if isExist: | |
shutil.rmtree(sub_path) | |
os.makedirs(sub_path, exist_ok = True) | |
img_files = {'search'+str(counter["dir_num"]):[]} | |
i = 0 | |
for img in imgs: | |
img.save(sub_path+"/img_" + str(i) + ".png","PNG") | |
img_files['search'+str(counter["dir_num"])].append(sub_path + '/' + 'img_'+ str(i) + ".png") | |
i+=1 | |
counter["dir_num"]+=1 | |
return img_files['search'+str(counter["dir_num"]-1)] | |
import gradio as gr | |
from deep_translator import GoogleTranslator | |
counter = {"dir_num": 1} | |
img_files = {'x':[]} | |
def fake_gan(text, alpha): | |
text_eng=GoogleTranslator(source='iw', target='en').translate(text) | |
imgs, descr = text_to_image(text_eng, alpha, 3) | |
img_files = img_to_file_list(imgs) | |
return img_files | |
def fake_text(text, alpha): | |
en_text = GoogleTranslator(source='iw', target='en').translate(text) | |
img , descr = text_to_image(en_text, alpha, 3) | |
return descr | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
text = gr.Textbox( | |
value = "ื'ืื ืก ืืืื ืืืืจืื", | |
label="Enter the product characteristics:", | |
) | |
alpha = gr.Slider(0, 1, step=0.01, label='Choose alpha:', value = 0.05) | |
with gr.Row(): | |
btn = gr.Button("Generate image") | |
with gr.Row(): | |
gallery = gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
).style(columns=[8], rows=[2], object_fit='scale-down', height='auto') | |
with gr.Row(): | |
selected = gr.Textbox(label="Product description: ", interactive=False, value = "-----> Description <-------",placeholder="Selected") | |
btn.click(fake_gan, inputs=[text, alpha], outputs=gallery) | |
def get_select_index(evt: gr.SelectData,text,alpha): | |
print(evt.index) | |
eng_text = fake_text(text, alpha)[evt.index] | |
#heb_text = GoogleTranslator(source='en', target='iw').translate(eng_text) | |
return eng_text | |
gallery.select( fn=get_select_index, inputs=[text,alpha], outputs=selected ) | |
demo.launch() | |