Spaces:
Runtime error
Runtime error
simonschoe
commited on
Commit
β’
d055610
1
Parent(s):
e45808b
update interface
Browse files
app.py
CHANGED
@@ -1,41 +1,38 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
from datetime import datetime
|
5 |
import os
|
6 |
import re
|
|
|
7 |
|
8 |
-
|
|
|
|
|
9 |
from gensim.models.fasttext import load_facebook_model
|
10 |
-
|
11 |
-
ACCESS_KEY = os.environ.get('ACCESS_KEY')
|
12 |
|
13 |
|
14 |
-
|
15 |
-
url = hf_hub_url(repo_id="simonschoe/call2vec", filename="model.bin")
|
16 |
-
|
17 |
-
model = load_facebook_model(cached_download(url))
|
18 |
|
19 |
-
def semantic_search(_input,
|
20 |
""" Perform semantic search """
|
21 |
|
22 |
_input = re.split('[,;\n]', _input)
|
23 |
_input = [s.strip().lower().replace(' ', '_') for s in _input if s]
|
24 |
|
25 |
if _input[0] != ACCESS_KEY:
|
26 |
-
with open('log.txt', 'a') as f:
|
27 |
f.write(str(datetime.now()) + '+++' + '___'.join(_input) + '\n')
|
28 |
|
29 |
if len(_input) > 1:
|
30 |
avg_input = np.stack([model.wv[w] for w in _input], axis=0).mean(axis=0)
|
31 |
-
nearest_neighbours = model.wv.most_similar(positive=avg_input, topn=
|
32 |
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbours]
|
33 |
else:
|
34 |
-
nearest_neighbours = model.wv.most_similar(positive=_input[0], topn=
|
35 |
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbours]
|
36 |
-
|
37 |
if _input[0] == ACCESS_KEY:
|
38 |
-
with open('log.txt', 'r') as f:
|
39 |
prompts = f.readlines()
|
40 |
prompts = [p.strip().split('+++') for p in prompts]
|
41 |
result = pd.DataFrame(prompts,
|
@@ -43,40 +40,28 @@ def semantic_search(_input, n):
|
|
43 |
else:
|
44 |
result = pd.DataFrame([(a[0],a[1],b) for a,b in zip(nearest_neighbours, frequencies)],
|
45 |
columns=['Token', 'Cosine Similarity', 'Corpus Frequency'])
|
46 |
-
|
47 |
result.to_csv('result.csv')
|
48 |
return result, 'result.csv', '\n'.join(_input)
|
49 |
|
50 |
-
app = gr.Blocks()
|
51 |
|
52 |
with app:
|
53 |
-
gr.Markdown(
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
57 |
text_in = gr.Textbox(lines=1, placeholder="Insert text", label="Search Query")
|
58 |
with gr.Row():
|
59 |
n = gr.Slider(value=50, minimum=5, maximum=250, step=5, label="Number of Neighbours")
|
60 |
-
|
61 |
df_out = gr.Dataframe(interactive=False)
|
62 |
f_out = gr.File(interactive=False, label="Download")
|
63 |
-
with gr.Column():
|
64 |
-
gr.Markdown(
|
65 |
-
"""
|
66 |
-
#### Project Description
|
67 |
-
Call2Vec is a [fastText](https://fasttext.cc/) word embedding model trained via [Gensim](https://radimrehurek.com/gensim/). It maps each token in the vocabulary into a dense, 300-dimensional vector space, designed for performing semantic search.
|
68 |
-
The model is trained on a large sample of quarterly earnings conference calls, held by U.S. firms during the 2006-2022 period. In particular, the training data is restriced to the (rather sponentous) executives' remarks of the Q&A section of the call. The data has been preprocessed prior to model training via stop word removal, lemmatization, named entity masking, and coocurrence modeling.
|
69 |
-
"""
|
70 |
-
)
|
71 |
-
gr.Markdown(
|
72 |
-
"""
|
73 |
-
#### App usage
|
74 |
-
The model is intented to be used for **semantic search**: It encodes the search query (entered in the textbox on the right) in a dense vector space and finds semantic neighbours, i.e., token which frequently occur within similar contexts in the underlying training data.
|
75 |
-
The model allows for two use cases:
|
76 |
-
1. *Single Search:* The input query consists of a single word. When provided a bi-, tri-, or even fourgram, the quality of the model output depends on the presence of the query token in the model's vocabulary. N-grams should be concated by an underscore (e.g., "machine_learning" or "artifical_intelligence").
|
77 |
-
2. *Multi Search:* The input query may consist of several words or n-grams, seperated by comma, semi-colon or newline. It then computes the average vector over all inputs and performs semantic search based on the average input token.
|
78 |
-
"""
|
79 |
-
)
|
80 |
gr.Examples(
|
81 |
examples = [
|
82 |
["transformation", 20],
|
@@ -88,15 +73,32 @@ with app:
|
|
88 |
fn = semantic_search,
|
89 |
cache_examples=True
|
90 |
)
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
app.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
+
from datetime import datetime
|
4 |
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
from gensim.models.fasttext import load_facebook_model
|
9 |
+
from huggingface_hub import hf_hub_download
|
|
|
10 |
|
11 |
|
12 |
+
ACCESS_KEY = os.environ.get('ACCESS_KEY')
|
13 |
+
url = hf_hub_download(repo_id="simonschoe/call2vec", filename="model.bin") #hf_hub_url(repo_id="simonschoe/call2vec", filename="model.bin")
|
14 |
+
model = load_facebook_model(url)
|
|
|
15 |
|
16 |
+
def semantic_search(_input, neighbours):
|
17 |
""" Perform semantic search """
|
18 |
|
19 |
_input = re.split('[,;\n]', _input)
|
20 |
_input = [s.strip().lower().replace(' ', '_') for s in _input if s]
|
21 |
|
22 |
if _input[0] != ACCESS_KEY:
|
23 |
+
with open('log.txt', 'a', encoding='utf-8') as f:
|
24 |
f.write(str(datetime.now()) + '+++' + '___'.join(_input) + '\n')
|
25 |
|
26 |
if len(_input) > 1:
|
27 |
avg_input = np.stack([model.wv[w] for w in _input], axis=0).mean(axis=0)
|
28 |
+
nearest_neighbours = model.wv.most_similar(positive=avg_input, topn=neighbours)
|
29 |
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbours]
|
30 |
else:
|
31 |
+
nearest_neighbours = model.wv.most_similar(positive=_input[0], topn=neighbours)
|
32 |
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbours]
|
33 |
+
|
34 |
if _input[0] == ACCESS_KEY:
|
35 |
+
with open('log.txt', 'r', encoding='utf-8') as f:
|
36 |
prompts = f.readlines()
|
37 |
prompts = [p.strip().split('+++') for p in prompts]
|
38 |
result = pd.DataFrame(prompts,
|
|
|
40 |
else:
|
41 |
result = pd.DataFrame([(a[0],a[1],b) for a,b in zip(nearest_neighbours, frequencies)],
|
42 |
columns=['Token', 'Cosine Similarity', 'Corpus Frequency'])
|
43 |
+
|
44 |
result.to_csv('result.csv')
|
45 |
return result, 'result.csv', '\n'.join(_input)
|
46 |
|
47 |
+
app = gr.Blocks(theme=gr.themes.Default(), css='#component-0 {max-width: 730px; margin: auto; padding-top: 1.5rem}')
|
48 |
|
49 |
with app:
|
50 |
+
gr.Markdown(
|
51 |
+
"""
|
52 |
+
# Call2Vec
|
53 |
+
## Semantic Search in Quarterly Earnings Conference Calls
|
54 |
+
"""
|
55 |
+
)
|
56 |
+
|
57 |
+
with gr.Tabs() as tabs:
|
58 |
+
with gr.TabItem("π Model", id=0):
|
59 |
text_in = gr.Textbox(lines=1, placeholder="Insert text", label="Search Query")
|
60 |
with gr.Row():
|
61 |
n = gr.Slider(value=50, minimum=5, maximum=250, step=5, label="Number of Neighbours")
|
62 |
+
btn = gr.Button("Search")
|
63 |
df_out = gr.Dataframe(interactive=False)
|
64 |
f_out = gr.File(interactive=False, label="Download")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
gr.Examples(
|
66 |
examples = [
|
67 |
["transformation", 20],
|
|
|
73 |
fn = semantic_search,
|
74 |
cache_examples=True
|
75 |
)
|
76 |
+
with gr.TabItem("π Usage", id=1):
|
77 |
+
gr.Markdown(
|
78 |
+
"""
|
79 |
+
#### App usage
|
80 |
+
The model is intended to be used for **semantic search**: It encodes the search query (entered in the textbox on the right) in a dense vector space and finds semantic neighbours, i.e., token which frequently occur within similar contexts in the underlying training data.
|
81 |
+
The model allows for two use cases:
|
82 |
+
1. *Single Search:* The input query consists of a single word. When provided a bi-, tri-, or even fourgram, the quality of the model output depends on the presence of the query token in the model's vocabulary. N-grams should be concated by an underscore (e.g., "machine_learning" or "artifical_intelligence").
|
83 |
+
2. *Multi Search:* The input query may consist of several words or n-grams, seperated by comma, semi-colon or newline. It then computes the average vector over all inputs and performs semantic search based on the average input token.
|
84 |
+
"""
|
85 |
+
)
|
86 |
+
with gr.TabItem("π About", id=2):
|
87 |
+
gr.Markdown(
|
88 |
+
"""
|
89 |
+
#### Project Description
|
90 |
+
Call2Vec is a [fastText](https://fasttext.cc/) word embedding model trained via [Gensim](https://radimrehurek.com/gensim/). It maps each token in the vocabulary into a dense, 300-dimensional vector space, designed for performing semantic search.
|
91 |
+
The model is trained on a large sample of quarterly earnings conference calls, held by U.S. firms during the 2006-2022 period. In particular, the training data is restriced to the (rather sponentous) executives' remarks of the Q&A section of the call. The data has been preprocessed prior to model training via stop word removal, lemmatization, named entity masking, and coocurrence modeling.
|
92 |
+
"""
|
93 |
+
)
|
94 |
+
|
95 |
+
with gr.Accordion("π Citation", open=False):
|
96 |
+
citation_button = gr.Textbox(
|
97 |
+
value='Placeholder',
|
98 |
+
label='Copy to cite these results.',
|
99 |
+
show_copy_button=True
|
100 |
+
)
|
101 |
+
|
102 |
+
btn.click(semantic_search, inputs=[text_in, n], outputs=[df_out, f_out, text_in])
|
103 |
|
104 |
app.launch()
|