Spaces:
Sleeping
Sleeping
import spaces | |
import tempfile | |
import gradio as gr | |
from streaming_stt_nemo import Model | |
from huggingface_hub import InferenceClient | |
import edge_tts | |
# Initialize default language and STT model | |
default_lang = "en" | |
engines = {default_lang: Model(default_lang)} | |
# Function to transcribe audio to text | |
def transcribe(audio): | |
lang = "en" | |
model = engines[lang] | |
text = model.stt_file(audio)[0] | |
return text | |
# Initialize Huggingface InferenceClient | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
# System instructions for the CrucialCoach | |
system_instructions = "[SYSTEM] You are CrucialCoach, an AI-powered conversational coach. Guide the user through challenging workplace situations using the principles from 'Crucial Conversations'. Ask one question at a time and provide step-by-step guidance.\n\n[USER]" | |
# Decorator for using GPU with a duration of 120 seconds | |
def model(text): | |
generate_kwargs = dict( | |
temperature=0.7, | |
max_new_tokens=512, | |
top_p=0.95, | |
repetition_penalty=1, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = system_instructions + text + "[CrucialCoach]" | |
stream = client.text_generation( | |
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False | |
) | |
output = "" | |
for response in stream: | |
if not response.token.text == "</s>": | |
output += response.token.text | |
return output | |
# Asynchronous function to handle audio input and provide response | |
async def respond(audio): | |
user = transcribe(audio) | |
reply = model(user) | |
communicate = edge_tts.Communicate(reply) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: | |
tmp_path = tmp_file.name | |
await communicate.save(tmp_path) | |
return tmp_path | |
# Gradio theme | |
theme = gr.themes.Base() | |
# Gradio interface for voice chat | |
with gr.Blocks(theme=theme, css="footer {visibility: hidden} textbox {resize: none}", title="CrucialCoach DEMO") as demo: | |
with gr.Tab("🗣️ Crucial Coach Chat"): | |
input_audio = gr.Audio(sources=["microphone"], type="filepath", label="Voice Chat") | |
output_audio = gr.Audio(type="filepath", label="CrucialCoach", interactive=False, autoplay=True, elem_classes="audio") | |
gr.Interface( | |
fn=respond, | |
inputs=input_audio, | |
outputs=output_audio, | |
live=True | |
) | |
# Queue setup and launch | |
demo.queue(max_size=200) | |
demo.launch() | |