Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,8 +36,6 @@ PLACEHOLDER = """
|
|
36 |
def bot_streaming(message, history):
|
37 |
print(f'message is - {message}')
|
38 |
print(f'history is - {history}')
|
39 |
-
|
40 |
-
image = None
|
41 |
if message["files"]:
|
42 |
if type(message["files"][-1]) == dict:
|
43 |
image = message["files"][-1]["path"]
|
@@ -47,50 +45,45 @@ def bot_streaming(message, history):
|
|
47 |
for hist in history:
|
48 |
if type(hist[0]) == tuple:
|
49 |
image = hist[0][0]
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
|
53 |
|
54 |
-
# Custom system prompt to guide the model's responses
|
55 |
-
system_prompt = (
|
56 |
-
"As Arnold Schwarzenegger, analyze the image to identify the exercise being performed. "
|
57 |
-
"Provide detailed coaching tips to improve the form, focusing on posture and common errors. "
|
58 |
-
"Use motivational and energetic language. If the image does not show an exercise, respond with: "
|
59 |
-
"'What are you doing? This is no time for games! Upload a real exercise picture and let's pump it up!'"
|
60 |
-
)
|
61 |
-
|
62 |
-
# Create the conversation history for the prompt
|
63 |
conversation = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
if len(history) == 0:
|
65 |
conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
|
66 |
else:
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
# Format the prompt as specified in the Phi model guidelines
|
72 |
-
formatted_prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
73 |
-
|
74 |
-
# Open the image and prepare inputs
|
75 |
image = Image.open(image)
|
76 |
-
inputs = processor(
|
77 |
-
|
78 |
-
# Define generation arguments
|
79 |
-
generation_args = {
|
80 |
-
"max_new_tokens": 280,
|
81 |
-
"temperature": 0.0,
|
82 |
-
"do_sample": False,
|
83 |
-
"eos_token_id": processor.tokenizer.eos_token_id,
|
84 |
-
}
|
85 |
|
86 |
-
|
87 |
-
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
92 |
|
93 |
-
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
|
|
|
36 |
def bot_streaming(message, history):
|
37 |
print(f'message is - {message}')
|
38 |
print(f'history is - {history}')
|
|
|
|
|
39 |
if message["files"]:
|
40 |
if type(message["files"][-1]) == dict:
|
41 |
image = message["files"][-1]["path"]
|
|
|
45 |
for hist in history:
|
46 |
if type(hist[0]) == tuple:
|
47 |
image = hist[0][0]
|
48 |
+
try:
|
49 |
+
if image is None:
|
50 |
+
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
|
51 |
+
except NameError:
|
52 |
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
conversation = []
|
55 |
+
flag = False
|
56 |
+
for user, assistant in history:
|
57 |
+
if assistant is None:
|
58 |
+
flag = True
|
59 |
+
conversation.extend([{"role": "user", "content": ""}])
|
60 |
+
continue
|
61 |
+
if flag == True:
|
62 |
+
conversation[0]['content'] = f"<|image_1|>\n{user}"
|
63 |
+
conversation.extend([{"role": "assistant", "content": assistant}])
|
64 |
+
flag = False
|
65 |
+
continue
|
66 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
67 |
+
|
68 |
if len(history) == 0:
|
69 |
conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
|
70 |
else:
|
71 |
+
conversation.append({"role": "user", "content": message['text']})
|
72 |
+
print(f"prompt is -\n{conversation}")
|
73 |
+
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
|
|
|
|
|
|
74 |
image = Image.open(image)
|
75 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces': False,})
|
78 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,)
|
79 |
|
80 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
81 |
+
thread.start()
|
|
|
82 |
|
83 |
+
buffer = ""
|
84 |
+
for new_text in streamer:
|
85 |
+
buffer += new_text
|
86 |
+
yield buffer
|
87 |
|
88 |
|
89 |
|