Spaces:
Sleeping
Sleeping
import subprocess | |
# Installing flash_attn | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
import gradio as gr | |
from PIL import Image | |
from transformers import AutoModelForCausalLM | |
from transformers import AutoProcessor | |
from transformers import TextIteratorStreamer | |
import time | |
from threading import Thread | |
import torch | |
import spaces | |
model_id = "microsoft/Phi-3-vision-128k-instruct" | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto") | |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
model.to("cuda:0") | |
# Enhanced Placeholder HTML with instructions and centralization | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center; justify-content: center; background-image: url('https://huggingface.co/spaces/simonraj/PersonalTrainer-Arnold/blob/main/fitness_coach_app_resized.jpg'); background-size: cover; background-position: center; width: 100%; height: 100vh;"> | |
<div style="background-color: rgba(255, 255, 255, 0.8); padding: 20px; border-radius: 10px; width: 80%; max-width: 550px; text-align: center;"> | |
<h1 style="font-size: 32px; margin-bottom: 10px; color: black;">Get Ripped with Arnold's AI Coach</h1> | |
<p style="font-size: 20px; margin-bottom: 10px; color: black;">Welcome to the ultimate fitness companion! πͺ</p> | |
<ul style="text-align: left; font-size: 18px; list-style: none; padding: 0; color: black;"> | |
<li>πΈ <strong>Upload</strong> a photo of your exercise.</li> | |
<li>β‘ <strong>Get instant feedback</strong> to perfect your form.</li> | |
<li>π₯ <strong>Improve your workouts</strong> with expert tips!</li> | |
</ul> | |
</div> | |
</div> | |
""" | |
def bot_streaming(message, history): | |
print(f'message is - {message}') | |
print(f'history is - {history}') | |
image = None | |
if message["files"]: | |
if type(message["files"][-1]) == dict: | |
image = message["files"][-1]["path"] | |
else: | |
image = message["files"][-1] | |
else: | |
for hist in history: | |
if type(hist[0]) == tuple: | |
image = hist[0][0] | |
if image is None: | |
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.") | |
# Default prompt if no text is provided by the user | |
default_prompt_text = "Identify and provide coaching cues for this exercise." | |
# Custom system prompt to guide the model's responses | |
system_prompt = ( | |
"As Arnold Schwarzenegger, analyze the image to identify the exercise being performed. " | |
"Provide detailed coaching tips to improve the form, focusing on posture and common errors. " | |
"Use motivational and energetic language. If the image does not show an exercise, respond with: " | |
"'What are you doing? This is no time for games! Upload a real exercise picture and let's pump it up!'" | |
) | |
# Create the conversation history for the prompt | |
conversation = [] | |
if len(history) == 0: | |
if message['text'].strip() == "": | |
conversation.append({"role": "user", "content": f"<|image_1|>\n{default_prompt_text}"}) | |
else: | |
conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"}) | |
else: | |
for user, assistant in history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
if message['text'].strip() == "": | |
conversation.append({"role": "user", "content": f"<|image_1|>\n{default_prompt_text}"}) | |
else: | |
conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"}) | |
# Format the prompt as specified in the Phi model guidelines | |
formatted_prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) | |
# Open the image and prepare inputs | |
image = Image.open(image) | |
inputs = processor(formatted_prompt, images=image, return_tensors="pt").to("cuda:0") | |
# Define generation arguments | |
generation_args = { | |
"max_new_tokens": 280, | |
"temperature": 0.0, | |
"do_sample": False, | |
"eos_token_id": processor.tokenizer.eos_token_id, | |
} | |
# Generate the response | |
generate_ids = model.generate(**inputs, **generation_args) | |
# Process the generated IDs to get the response text | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
yield response | |
chatbot = gr.Chatbot(scale=1, placeholder=PLACEHOLDER) | |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) | |
with gr.Blocks(fill_height=True,) as demo: | |
gr.ChatInterface( | |
fn=bot_streaming, | |
title="Get Ripped with Arnold's AI Coach", | |
examples=[ | |
{"text": "Identify and provide coaching cues for this exercise.", "files": ["./squat.jpg"]}, | |
{"text": "What improvements can I make?", "files": ["./pushup.jpg"]}, | |
{"text": "How is my form?", "files": ["./plank.jpg"]}, | |
{"text": "Give me some tips to improve my deadlift.", "files": ["./deadlift.jpg"]} | |
], | |
description="Welcome to the ultimate fitness companion! πͺ\nUpload a photo of your exercise and get instant feedback to perfect your form. Improve your workouts with expert tips!", | |
stop_btn="Stop Generation", | |
multimodal=True, | |
textbox=chat_input, | |
chatbot=chatbot, | |
cache_examples=False, | |
examples_per_page=3 | |
) | |
demo.queue() | |
demo.launch(debug=True, quiet=True) | |