Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,10 +36,6 @@ def process_data(file: gr.File, progress=gr.Progress()) -> Tuple[str, str, pd.Da
|
|
36 |
|
37 |
# Extract filename without extension
|
38 |
base_filename = os.path.splitext(os.path.basename(file.name))[0]
|
39 |
-
|
40 |
-
# Define output paths
|
41 |
-
final_file_path = f'mailmerge {base_filename}.xlsx'
|
42 |
-
base_path = 'mailmerge'
|
43 |
|
44 |
# Step 1: Extract User Information
|
45 |
user_info = raw_data[['user_id', 'lastname']].drop_duplicates().copy()
|
@@ -63,9 +59,9 @@ def process_data(file: gr.File, progress=gr.Progress()) -> Tuple[str, str, pd.Da
|
|
63 |
|
64 |
progress(0.6, desc="Calculating grand totals")
|
65 |
|
66 |
-
# Step 4: Generate Filenames and Paths
|
67 |
user_info['File'] = 'User_' + user_info['Username'] + '_data.csv'
|
68 |
-
user_info['Path'] = user_info['File']
|
69 |
|
70 |
# Remove extra columns and summary rows
|
71 |
user_info = user_info[['Username', 'Name', 'Courses', 'Grand Total', 'Email', 'File', 'Path']]
|
@@ -73,13 +69,7 @@ def process_data(file: gr.File, progress=gr.Progress()) -> Tuple[str, str, pd.Da
|
|
73 |
user_info.drop_duplicates(subset=['Username'], inplace=True)
|
74 |
user_info.sort_values(by='Username', inplace=True)
|
75 |
|
76 |
-
progress(0.8, desc="Generating
|
77 |
-
|
78 |
-
# Generate individual CSV files for each user
|
79 |
-
required_columns = ['course_id', 'course_pk1', 'data', 'event_type', 'internal_handle', 'lastname', 'session_id', 'timestamp', 'user_id', 'system_role']
|
80 |
-
missing_columns = [col for col in required_columns if col not in raw_data.columns]
|
81 |
-
if missing_columns:
|
82 |
-
raise ValueError(f"Missing columns for individual CSV files: {', '.join(missing_columns)}")
|
83 |
|
84 |
# Create a BytesIO object to store the zip file
|
85 |
zip_buffer = io.BytesIO()
|
@@ -88,7 +78,7 @@ def process_data(file: gr.File, progress=gr.Progress()) -> Tuple[str, str, pd.Da
|
|
88 |
# Save individual CSV files
|
89 |
for user_id in user_info['Username'].unique():
|
90 |
user_data = raw_data[raw_data['user_id'] == user_id][required_columns]
|
91 |
-
user_file_path = f'
|
92 |
zip_file.writestr(user_file_path, user_data.to_csv(index=False))
|
93 |
|
94 |
# Save the final Excel file
|
@@ -103,7 +93,7 @@ def process_data(file: gr.File, progress=gr.Progress()) -> Tuple[str, str, pd.Da
|
|
103 |
worksheet.write(f'C{last_row + 1}', user_info['Courses'].sum())
|
104 |
worksheet.write(f'D{last_row + 1}', user_info['Grand Total'].sum())
|
105 |
|
106 |
-
zip_file.writestr(
|
107 |
|
108 |
zip_buffer.seek(0)
|
109 |
progress(1.0, desc="Processing complete")
|
@@ -171,7 +161,10 @@ def update_insights(df: pd.DataFrame, zip_file: Union[io.BytesIO, None]) -> List
|
|
171 |
|
172 |
user_table = gr.DataFrame(value=df)
|
173 |
|
174 |
-
|
|
|
|
|
|
|
175 |
|
176 |
return [stats_md, users_activity_chart, users_courses_chart, scatter_plot, user_table, download_button]
|
177 |
except Exception as e:
|
|
|
36 |
|
37 |
# Extract filename without extension
|
38 |
base_filename = os.path.splitext(os.path.basename(file.name))[0]
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Step 1: Extract User Information
|
41 |
user_info = raw_data[['user_id', 'lastname']].drop_duplicates().copy()
|
|
|
59 |
|
60 |
progress(0.6, desc="Calculating grand totals")
|
61 |
|
62 |
+
# Step 4: Generate Filenames and Paths (for reference only, not creating actual files)
|
63 |
user_info['File'] = 'User_' + user_info['Username'] + '_data.csv'
|
64 |
+
user_info['Path'] = 'mailmerge/' + user_info['File']
|
65 |
|
66 |
# Remove extra columns and summary rows
|
67 |
user_info = user_info[['Username', 'Name', 'Courses', 'Grand Total', 'Email', 'File', 'Path']]
|
|
|
69 |
user_info.drop_duplicates(subset=['Username'], inplace=True)
|
70 |
user_info.sort_values(by='Username', inplace=True)
|
71 |
|
72 |
+
progress(0.8, desc="Generating output files")
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
# Create a BytesIO object to store the zip file
|
75 |
zip_buffer = io.BytesIO()
|
|
|
78 |
# Save individual CSV files
|
79 |
for user_id in user_info['Username'].unique():
|
80 |
user_data = raw_data[raw_data['user_id'] == user_id][required_columns]
|
81 |
+
user_file_path = f'mailmerge/User_{user_id}_data.csv'
|
82 |
zip_file.writestr(user_file_path, user_data.to_csv(index=False))
|
83 |
|
84 |
# Save the final Excel file
|
|
|
93 |
worksheet.write(f'C{last_row + 1}', user_info['Courses'].sum())
|
94 |
worksheet.write(f'D{last_row + 1}', user_info['Grand Total'].sum())
|
95 |
|
96 |
+
zip_file.writestr(f'mailmerge {base_filename}.xlsx', excel_buffer.getvalue())
|
97 |
|
98 |
zip_buffer.seek(0)
|
99 |
progress(1.0, desc="Processing complete")
|
|
|
161 |
|
162 |
user_table = gr.DataFrame(value=df)
|
163 |
|
164 |
+
if zip_file:
|
165 |
+
download_button = gr.File(value=zip_file, filename="gradebook_results.zip", visible=True, label="Download Results")
|
166 |
+
else:
|
167 |
+
download_button = gr.File(visible=False, label="Download Results")
|
168 |
|
169 |
return [stats_md, users_activity_chart, users_courses_chart, scatter_plot, user_table, download_button]
|
170 |
except Exception as e:
|