Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| import os | |
| import gradio as gr | |
| import plotly.express as px | |
| from typing import Tuple, List, Union | |
| import traceback | |
| import io | |
| import zipfile | |
| import tempfile | |
| # NTU Singapore colors | |
| NTU_BLUE = "#003D7C" | |
| NTU_RED = "#C11E38" | |
| NTU_GOLD = "#E7B820" | |
| def process_data(file: gr.File, progress=gr.Progress()) -> Tuple[str, str, pd.DataFrame, Union[str, None]]: | |
| try: | |
| # Check if file is uploaded | |
| if file is None: | |
| raise ValueError("No file uploaded. Please upload an Excel file.") | |
| # Check file extension | |
| if not file.name.lower().endswith(('.xls', '.xlsx')): | |
| raise ValueError("Invalid file format. Please upload an Excel file (.xls or .xlsx).") | |
| # Load the raw Excel file | |
| try: | |
| raw_data = pd.read_excel(file.name) | |
| except Exception as e: | |
| raise ValueError(f"Error reading Excel file: {str(e)}") | |
| base_path = tempfile.mkdtemp() | |
| mailmerge_path = os.path.join('mailmerge') | |
| final_file_path = os.path.join(base_path, 'final_output.xlsx') | |
| # Step 1: Extract User Information | |
| user_info = raw_data[['user_id', 'lastname']].drop_duplicates().copy() | |
| user_info['Username'] = user_info['user_id'] | |
| user_info['Name'] = user_info['lastname'] | |
| user_info['Email'] = user_info['user_id'] + '@ntu.edu.sg' | |
| progress(0.2, desc="Extracting user information") | |
| # Step 2: Calculate Course Count | |
| course_counts = raw_data.groupby('user_id')['course_id'].nunique().reset_index() | |
| course_counts.columns = ['Username', 'Courses'] | |
| user_info = user_info.merge(course_counts, on='Username', how='left') | |
| progress(0.4, desc="Calculating course counts") | |
| # Step 3: Calculate Grand Total | |
| event_counts = raw_data.groupby('user_id').size().reset_index(name='Grand Total') | |
| event_counts.columns = ['Username', 'Grand Total'] | |
| user_info = user_info.merge(event_counts, on='Username', how='left') | |
| progress(0.6, desc="Calculating grand totals") | |
| # Step 4: Generate Filenames and Paths | |
| user_info['File'] = 'User_' + user_info['Username'] + '_data.csv' | |
| user_info['Path'] = user_info['File'].apply(lambda x: os.path.join(mailmerge_path, x)) | |
| # Remove extra columns and summary rows | |
| user_info = user_info[['Username', 'Name', 'Courses', 'Grand Total', 'Email', 'File', 'Path']] | |
| user_info = user_info[user_info['Username'].notna()] | |
| user_info.drop_duplicates(subset=['Username'], inplace=True) | |
| user_info.sort_values(by='Username', inplace=True) | |
| progress(0.8, desc="Generating output files") | |
| # Calculate totals for Courses and Grand Total | |
| total_courses = user_info['Courses'].sum() | |
| total_grand_total = user_info['Grand Total'].sum() | |
| # Generate individual CSV files for each user | |
| required_columns = ['course_id', 'course_pk1', 'data', 'event_type', 'internal_handle', 'lastname', 'session_id', 'timestamp', 'user_id', 'system_role'] | |
| full_mailmerge_path = os.path.join(base_path, mailmerge_path) | |
| if not os.path.exists(full_mailmerge_path): | |
| os.makedirs(full_mailmerge_path) | |
| for user_id in user_info['Username'].unique(): | |
| user_data = raw_data[raw_data['user_id'] == user_id][required_columns] | |
| user_file_path = os.path.join(full_mailmerge_path, f'User_{user_id}_data.csv') | |
| user_data.to_csv(user_file_path, index=False) | |
| # Save the final dataframe to the output Excel file | |
| with pd.ExcelWriter(final_file_path, engine='xlsxwriter') as writer: | |
| user_info.to_excel(writer, index=False, sheet_name='Sheet1') | |
| workbook = writer.book | |
| worksheet = writer.sheets['Sheet1'] | |
| # Find the last row number dynamically | |
| last_row = len(user_info) + 1 # Account for header row in Excel | |
| # Write the total values in columns B, C, and D of the first empty row after the user data | |
| worksheet.write(f'B{last_row + 1}', 'Total') | |
| worksheet.write(f'C{last_row + 1}', total_courses) | |
| worksheet.write(f'D{last_row + 1}', total_grand_total) | |
| # Create a zip file containing all user CSV files and the final Excel file | |
| zip_buffer = io.BytesIO() | |
| with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file: | |
| for root, _, files in os.walk(full_mailmerge_path): | |
| for file in files: | |
| file_path = os.path.join(root, file) | |
| arcname = os.path.relpath(file_path, base_path) | |
| zip_file.write(file_path, arcname) | |
| zip_file.write(final_file_path, os.path.basename(final_file_path)) | |
| zip_buffer.seek(0) | |
| temp_zip_file = tempfile.NamedTemporaryFile(delete=False, suffix=".zip") | |
| with open(temp_zip_file.name, 'wb') as f: | |
| f.write(zip_buffer.getvalue()) | |
| progress(1.0, desc="Processing complete") | |
| return "Processing complete. You can now download the results.", "Results are packaged in the zip file below.", user_info, temp_zip_file.name | |
| except Exception as e: | |
| error_msg = f"Error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
| return error_msg, "Processing failed", pd.DataFrame(), None | |
| def create_summary_stats(df: pd.DataFrame) -> dict: | |
| try: | |
| return { | |
| "Total Users": len(df), | |
| "Total Courses": df['Courses'].sum(), | |
| "Total Activity": df['Grand Total'].sum(), | |
| "Avg Courses per User": df['Courses'].mean(), | |
| "Avg Activity per User": df['Grand Total'].mean() | |
| } | |
| except Exception as e: | |
| return {"Error": f"Failed to create summary stats: {str(e)}"} | |
| def create_bar_chart(df: pd.DataFrame, x: str, y: str, title: str) -> Union[px.bar, None]: | |
| try: | |
| if df.empty: | |
| return None | |
| fig = px.bar(df, x=x, y=y, title=title) | |
| fig.update_layout( | |
| plot_bgcolor='white', | |
| paper_bgcolor='white', | |
| font_color=NTU_BLUE | |
| ) | |
| fig.update_xaxes(tickmode='linear') # Ensure all x-axis labels are shown | |
| fig.update_traces(marker_color=NTU_BLUE) | |
| return fig | |
| except Exception as e: | |
| print(f"Error creating bar chart: {str(e)}") | |
| return None | |
| def create_scatter_plot(df: pd.DataFrame) -> Union[px.scatter, None]: | |
| try: | |
| if df.empty: | |
| return None | |
| fig = px.scatter(df, x='Courses', y='Grand Total', title='Courses vs. Activity Level', | |
| hover_data=['Username', 'Name']) | |
| fig.update_layout( | |
| plot_bgcolor='white', | |
| paper_bgcolor='white', | |
| font_color=NTU_BLUE | |
| ) | |
| fig.update_xaxes(tickmode='linear') # Ensure all x-axis labels are shown | |
| fig.update_traces(marker_color=NTU_RED) | |
| return fig | |
| except Exception as e: | |
| print(f"Error creating scatter plot: {str(e)}") | |
| return None | |
| def update_insights(df: pd.DataFrame, zip_path: Union[str, None]) -> List[Union[gr.components.Component, None]]: | |
| try: | |
| if df.empty: | |
| return [gr.Markdown("No data available. Please upload and process a file first.")] + [None] * 6 | |
| stats = create_summary_stats(df) | |
| stats_md = gr.Markdown("\n".join([f"**{k}**: {v:.2f}" for k, v in stats.items()])) | |
| users_activity_chart = create_bar_chart(df, 'Username', 'Grand Total', 'User Activity Levels') | |
| users_courses_chart = create_bar_chart(df, 'Username', 'Courses', 'Courses per User') | |
| scatter_plot = create_scatter_plot(df) | |
| user_table = gr.DataFrame(value=df) | |
| if zip_path: | |
| download_button = gr.File(value=zip_path, visible=True, label="Download Results") | |
| download_text = gr.Markdown("Click the 'Download Results' button above to download the ZIP file containing all processed data.") | |
| else: | |
| download_button = gr.File(visible=False, label="Download Results") | |
| download_text = gr.Markdown("") | |
| return [stats_md, users_activity_chart, users_courses_chart, scatter_plot, user_table, download_button, download_text] | |
| except Exception as e: | |
| error_msg = f"Error updating insights: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
| return [gr.Markdown(error_msg)] + [None] * 6 | |
| def process_and_update(file): | |
| try: | |
| result_msg, csv_loc, df, zip_path = process_data(file) | |
| insights = update_insights(df, zip_path) | |
| return [result_msg, csv_loc, zip_path] + insights | |
| except Exception as e: | |
| error_msg = f"Error in process_and_update: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
| return [error_msg, "Processing failed", None] + [gr.Markdown(error_msg)] + [None] * 6 | |
| def clear_outputs(): | |
| return [""] * 2 + [None] * 6 + [""] # 2 text outputs, 6 graph/table/file outputs, and 1 download text | |
| # Create a custom theme | |
| custom_theme = gr.themes.Base().set( | |
| body_background_fill="#E6F3FF", | |
| body_text_color="#003D7C", | |
| button_primary_background_fill="#C11E38", | |
| button_primary_background_fill_hover="#A5192F", | |
| button_primary_text_color="white", | |
| block_title_text_color="#003D7C", | |
| block_label_background_fill="#E6F3FF", | |
| input_background_fill="white", | |
| input_border_color="#003D7C", | |
| input_border_color_focus="#C11E38", | |
| ) | |
| # Custom CSS | |
| custom_css = """ | |
| .gr-button-secondary { | |
| background-color: #F0F0F0; | |
| color: #003D7C; | |
| border: 1px solid #003D7C; | |
| border-radius: 12px; | |
| padding: 8px 16px; | |
| font-size: 16px; | |
| font-weight: bold; | |
| cursor: pointer; | |
| transition: background-color 0.3s, color 0.3s, border-color 0.3s; | |
| } | |
| .gr-button-secondary:hover { | |
| background-color: #003D7C; | |
| color: white; | |
| border-color: #003D7C; | |
| } | |
| .gr-button-secondary:active { | |
| transform: translateY(1px); | |
| } | |
| .app-title { | |
| color: #003D7C; | |
| font-size: 24px; | |
| font-weight: bold; | |
| text-align: center; | |
| margin-bottom: 20px; | |
| } | |
| """ | |
| with gr.Blocks(theme=custom_theme, css=custom_css) as iface: | |
| gr.Markdown("# Gradebook Data Processor", elem_classes=["app-title"]) | |
| with gr.Tabs(): | |
| with gr.TabItem("1. File Upload and Processing"): | |
| gr.Markdown("## Step 1: Upload your Excel file and process the data") | |
| file_input = gr.File(label="Upload Excel File") | |
| process_btn = gr.Button("Process Data", variant="primary") | |
| output_msg = gr.Textbox(label="Processing Result") | |
| csv_location = gr.Textbox(label="Output Information") | |
| gr.Markdown("## Step 2: Download Mail merge package") | |
| download_button = gr.File(visible=False, label="Download Results") | |
| gr.Markdown("Tip: 😎 After processing, switch to the 'Data Insights' tab at the top to view results and analytics.") | |
| with gr.TabItem("2. Data Insights Dashboard"): | |
| gr.Markdown("## Data Insights") | |
| summary_stats = gr.Markdown("Upload and process a file to see summary statistics.") | |
| with gr.Row(): | |
| users_activity_chart = gr.Plot() | |
| users_courses_chart = gr.Plot() | |
| scatter_plot = gr.Plot() | |
| user_table = gr.DataFrame() | |
| clear_btn = gr.Button("Clear All Data", variant="secondary") | |
| gr.Markdown("Click 'Clear All Data' to reset the application and start over.") | |
| process_btn.click( | |
| process_and_update, | |
| inputs=[file_input], | |
| outputs=[output_msg, csv_location, download_button, summary_stats, users_activity_chart, users_courses_chart, scatter_plot, user_table, download_button] | |
| ) | |
| clear_btn.click( | |
| clear_outputs, | |
| inputs=[], | |
| outputs=[output_msg, csv_location, summary_stats, users_activity_chart, users_courses_chart, scatter_plot, user_table, download_button] | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |