Spaces:
Sleeping
Sleeping
import pandas as pd | |
import os | |
import gradio as gr | |
import plotly.express as px | |
from typing import Tuple, List, Union | |
import traceback | |
import io | |
import zipfile | |
# NTU Singapore colors | |
NTU_BLUE = "#003D7C" | |
NTU_RED = "#C11E38" | |
NTU_GOLD = "#E7B820" | |
def process_data(file: gr.File, progress=gr.Progress()) -> Tuple[str, str, pd.DataFrame, Union[Tuple[io.BytesIO, str], None]]: | |
try: | |
# Check if file is uploaded | |
if file is None: | |
raise ValueError("No file uploaded. Please upload an Excel file.") | |
# Check file extension | |
if not file.name.lower().endswith(('.xls', '.xlsx')): | |
raise ValueError("Invalid file format. Please upload an Excel file (.xls or .xlsx).") | |
# Load the raw Excel file | |
try: | |
raw_data = pd.read_excel(file.name) | |
except Exception as e: | |
raise ValueError(f"Error reading Excel file: {str(e)}") | |
# Check if required columns are present | |
required_columns = ['user_id', 'lastname', 'course_id'] | |
missing_columns = [col for col in required_columns if col not in raw_data.columns] | |
if missing_columns: | |
raise ValueError(f"Missing required columns: {', '.join(missing_columns)}") | |
# Extract filename without extension | |
base_filename = os.path.splitext(os.path.basename(file.name))[0] | |
# Step 1: Extract User Information | |
user_info = raw_data[['user_id', 'lastname']].drop_duplicates().copy() | |
user_info['Username'] = user_info['user_id'] | |
user_info['Name'] = user_info['lastname'] | |
user_info['Email'] = user_info['user_id'] + '@ntu.edu.sg' | |
progress(0.2, desc="Extracting user information") | |
# Step 2: Calculate Course Count | |
course_counts = raw_data.groupby('user_id')['course_id'].nunique().reset_index() | |
course_counts.columns = ['Username', 'Courses'] | |
user_info = user_info.merge(course_counts, on='Username', how='left') | |
progress(0.4, desc="Calculating course counts") | |
# Step 3: Calculate Grand Total | |
event_counts = raw_data.groupby('user_id').size().reset_index(name='Grand Total') | |
event_counts.columns = ['Username', 'Grand Total'] | |
user_info = user_info.merge(event_counts, on='Username', how='left') | |
progress(0.6, desc="Calculating grand totals") | |
# Step 4: Generate Filenames and Paths (for reference only, not creating actual files) | |
user_info['File'] = 'User_' + user_info['Username'] + '_data.csv' | |
user_info['Path'] = 'mailmerge/' + user_info['File'] | |
# Remove extra columns and summary rows | |
user_info = user_info[['Username', 'Name', 'Courses', 'Grand Total', 'Email', 'File', 'Path']] | |
user_info = user_info[user_info['Username'].notna()] | |
user_info.drop_duplicates(subset=['Username'], inplace=True) | |
user_info.sort_values(by='Username', inplace=True) | |
progress(0.8, desc="Generating output files") | |
# Create a BytesIO object to store the zip file | |
zip_buffer = io.BytesIO() | |
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file: | |
# Save individual CSV files | |
for user_id in user_info['Username'].unique(): | |
user_data = raw_data[raw_data['user_id'] == user_id][required_columns] | |
user_file_path = f'mailmerge/User_{user_id}_data.csv' | |
zip_file.writestr(user_file_path, user_data.to_csv(index=False)) | |
# Save the final Excel file | |
excel_buffer = io.BytesIO() | |
with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer: | |
user_info.to_excel(writer, index=False, sheet_name='Sheet1') | |
workbook = writer.book | |
worksheet = writer.sheets['Sheet1'] | |
last_row = len(user_info) + 1 | |
worksheet.write(f'B{last_row + 1}', 'Total') | |
worksheet.write(f'C{last_row + 1}', user_info['Courses'].sum()) | |
worksheet.write(f'D{last_row + 1}', user_info['Grand Total'].sum()) | |
zip_file.writestr(f'mailmerge {base_filename}.xlsx', excel_buffer.getvalue()) | |
zip_buffer.seek(0) | |
progress(1.0, desc="Processing complete") | |
return "Processing complete. You can now download the results.", "Results are packaged in the zip file below.", user_info, (zip_buffer, f"gradebook_results_{base_filename}.zip") | |
except Exception as e: | |
error_msg = f"Error: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
return error_msg, "Processing failed", pd.DataFrame(), None | |
def create_summary_stats(df: pd.DataFrame) -> dict: | |
try: | |
return { | |
"Total Users": len(df), | |
"Total Courses": df['Courses'].sum(), | |
"Total Activity": df['Grand Total'].sum(), | |
"Avg Courses per User": df['Courses'].mean(), | |
"Avg Activity per User": df['Grand Total'].mean() | |
} | |
except Exception as e: | |
return {"Error": f"Failed to create summary stats: {str(e)}"} | |
def create_bar_chart(df: pd.DataFrame, x: str, y: str, title: str) -> Union[px.bar, None]: | |
try: | |
if df.empty: | |
return None | |
fig = px.bar(df, x=x, y=y, title=title) | |
fig.update_layout( | |
plot_bgcolor='white', | |
paper_bgcolor='white', | |
font_color=NTU_BLUE | |
) | |
fig.update_traces(marker_color=NTU_BLUE) | |
return fig | |
except Exception as e: | |
print(f"Error creating bar chart: {str(e)}") | |
return None | |
def create_scatter_plot(df: pd.DataFrame) -> Union[px.scatter, None]: | |
try: | |
if df.empty: | |
return None | |
fig = px.scatter(df, x='Courses', y='Grand Total', title='Courses vs. Activity Level', | |
hover_data=['Username', 'Name']) | |
fig.update_layout( | |
plot_bgcolor='white', | |
paper_bgcolor='white', | |
font_color=NTU_BLUE | |
) | |
fig.update_traces(marker_color=NTU_RED) | |
return fig | |
except Exception as e: | |
print(f"Error creating scatter plot: {str(e)}") | |
return None | |
def update_insights(df: pd.DataFrame, zip_data: Union[Tuple[io.BytesIO, str], None]) -> List[Union[gr.components.Component, None]]: | |
try: | |
if df.empty: | |
return [gr.Markdown("No data available. Please upload and process a file first.")] + [None] * 5 | |
stats = create_summary_stats(df) | |
stats_md = gr.Markdown("\n".join([f"**{k}**: {v:.2f}" for k, v in stats.items()])) | |
users_activity_chart = create_bar_chart(df, 'Username', 'Grand Total', 'User Activity Levels') | |
users_courses_chart = create_bar_chart(df, 'Username', 'Courses', 'Courses per User') | |
scatter_plot = create_scatter_plot(df) | |
user_table = gr.DataFrame(value=df) | |
if zip_data: | |
zip_file, zip_name = zip_data | |
download_button = gr.File(value=zip_file, visible=True, label="Download Results (ZIP)") | |
else: | |
download_button = gr.File(visible=False, label="Download Results (ZIP)") | |
return [stats_md, users_activity_chart, users_courses_chart, scatter_plot, user_table, download_button] | |
except Exception as e: | |
error_msg = f"Error updating insights: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
return [gr.Markdown(error_msg)] + [None] * 5 | |
def process_and_update(file): | |
try: | |
result_msg, csv_loc, df, zip_data = process_data(file) | |
insights = update_insights(df, zip_data) | |
return [result_msg, csv_loc] + insights | |
except Exception as e: | |
error_msg = f"Error in process_and_update: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
return [error_msg, "Processing failed"] + [gr.Markdown(error_msg)] + [None] * 5 | |
def clear_outputs(): | |
return [""] * 2 + [None] * 6 # 2 text outputs and 6 graph/table/file outputs | |
# Create a custom theme | |
custom_theme = gr.themes.Base().set( | |
body_background_fill="#E6F3FF", | |
body_text_color="#003D7C", | |
button_primary_background_fill="#C11E38", | |
button_primary_background_fill_hover="#A5192F", | |
button_primary_text_color="white", | |
block_title_text_color="#003D7C", | |
block_label_background_fill="#E6F3FF", | |
input_background_fill="white", | |
input_border_color="#003D7C", | |
input_border_color_focus="#C11E38", | |
) | |
# Custom CSS | |
custom_css = """ | |
.gr-button-secondary { | |
background-color: #F0F0F0; | |
color: #003D7C; | |
border: 1px solid #003D7C; | |
border-radius: 12px; | |
padding: 8px 16px; | |
font-size: 16px; | |
font-weight: bold; | |
cursor: pointer; | |
transition: background-color 0.3s, color 0.3s, border-color 0.3s; | |
} | |
.gr-button-secondary:hover { | |
background-color: #003D7C; | |
color: white; | |
border-color: #003D7C; | |
} | |
.gr-button-secondary:active { | |
transform: translateY(1px); | |
} | |
.app-title { | |
color: #003D7C; | |
font-size: 24px; | |
font-weight: bold; | |
text-align: center; | |
margin-bottom: 20px; | |
} | |
""" | |
with gr.Blocks(theme=custom_theme, css=custom_css) as iface: | |
gr.Markdown("# Gradebook Data Processor", elem_classes=["app-title"]) | |
with gr.Tabs(): | |
with gr.TabItem("1. File Upload and Processing"): | |
gr.Markdown("## Step 1: Upload your Excel file and process the data") | |
file_input = gr.File(label="Upload Excel File") | |
process_btn = gr.Button("Process Data", variant="primary") | |
output_msg = gr.Textbox(label="Processing Result") | |
csv_location = gr.Textbox(label="Output Information") | |
gr.Markdown("After processing, switch to the 'Data Insights' tab to view results and download files.") | |
with gr.TabItem("2. Data Insights Dashboard"): | |
gr.Markdown("## Step 2: Review insights and download results") | |
summary_stats = gr.Markdown("Upload and process a file to see summary statistics.") | |
with gr.Row(): | |
users_activity_chart = gr.Plot() | |
users_courses_chart = gr.Plot() | |
scatter_plot = gr.Plot() | |
user_table = gr.DataFrame() | |
download_button = gr.File(visible=False, label="Download Results (ZIP)") | |
clear_btn = gr.Button("Clear All Data", variant="secondary") | |
gr.Markdown("Click 'Clear All Data' to reset the application and start over.") | |
process_btn.click( | |
process_and_update, | |
inputs=[file_input], | |
outputs=[output_msg, csv_location, summary_stats, users_activity_chart, users_courses_chart, scatter_plot, user_table, download_button] | |
) | |
clear_btn.click( | |
clear_outputs, | |
inputs=[], | |
outputs=[output_msg, csv_location, summary_stats, users_activity_chart, users_courses_chart, scatter_plot, user_table, download_button] | |
) | |
if __name__ == "__main__": | |
iface.launch() |