Spaces:
Runtime error
Runtime error
import warnings | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class Model(nn.Module): | |
"""Model with same padding | |
Conv5 uses a large filter size to aggregate the features from the whole box""" | |
def __init__(self): | |
super(Model, self).__init__() | |
self.conv1 = nn.Conv3d(8, 32, 3, padding="same") | |
self.conv2 = nn.Conv3d(32, 64, 3, padding="same") | |
self.conv3 = nn.Conv3d(64, 80, 3, padding="same") | |
self.conv4 = nn.Conv3d(80, 20, 3, padding="same") | |
self.conv5 = nn.Conv3d(20, 20, 20, padding="same") | |
self.conv6 = nn.Conv3d(20, 16, 3, padding="same") | |
self.conv7 = nn.Conv3d(16, 1, 3, padding="same") | |
self.dropout1 = nn.Dropout(0.2) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = F.relu(x) | |
x = self.conv2(x) | |
x = F.relu(x) | |
x = self.conv3(x) | |
x = F.relu(x) | |
x = self.conv4(x) | |
x = F.relu(x) | |
x = self.conv5(x) | |
x = F.relu(x) | |
x = self.dropout1(x) | |
x = self.conv6(x) | |
x = F.relu(x) | |
x = self.conv7(x) | |
x = torch.sigmoid(x) | |
return x | |