Spaces:
Sleeping
Sleeping
import copy | |
import math | |
import os | |
from functools import partial | |
import wandb | |
import torch | |
torch.multiprocessing.set_sharing_strategy('file_system') | |
import resource | |
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) | |
resource.setrlimit(resource.RLIMIT_NOFILE, (64000, rlimit[1])) | |
import yaml | |
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl | |
from datasets.pdbbind import construct_loader | |
from utils.parsing import parse_train_args | |
from utils.training import train_epoch, test_epoch, loss_function, inference_epoch | |
from utils.utils import save_yaml_file, get_optimizer_and_scheduler, get_model, ExponentialMovingAverage | |
def train(args, model, optimizer, scheduler, ema_weights, train_loader, val_loader, t_to_sigma, run_dir): | |
best_val_loss = math.inf | |
best_val_inference_value = math.inf if args.inference_earlystop_goal == 'min' else 0 | |
best_epoch = 0 | |
best_val_inference_epoch = 0 | |
loss_fn = partial(loss_function, tr_weight=args.tr_weight, rot_weight=args.rot_weight, | |
tor_weight=args.tor_weight, no_torsion=args.no_torsion) | |
print("Starting training...") | |
for epoch in range(args.n_epochs): | |
if epoch % 5 == 0: print("Run name: ", args.run_name) | |
logs = {} | |
train_losses = train_epoch(model, train_loader, optimizer, device, t_to_sigma, loss_fn, ema_weights) | |
print("Epoch {}: Training loss {:.4f} tr {:.4f} rot {:.4f} tor {:.4f}" | |
.format(epoch, train_losses['loss'], train_losses['tr_loss'], train_losses['rot_loss'], | |
train_losses['tor_loss'])) | |
ema_weights.store(model.parameters()) | |
if args.use_ema: ema_weights.copy_to(model.parameters()) # load ema parameters into model for running validation and inference | |
val_losses = test_epoch(model, val_loader, device, t_to_sigma, loss_fn, args.test_sigma_intervals) | |
print("Epoch {}: Validation loss {:.4f} tr {:.4f} rot {:.4f} tor {:.4f}" | |
.format(epoch, val_losses['loss'], val_losses['tr_loss'], val_losses['rot_loss'], val_losses['tor_loss'])) | |
if args.val_inference_freq != None and (epoch + 1) % args.val_inference_freq == 0: | |
inf_metrics = inference_epoch(model, val_loader.dataset.complex_graphs[:args.num_inference_complexes], device, t_to_sigma, args) | |
print("Epoch {}: Val inference rmsds_lt2 {:.3f} rmsds_lt5 {:.3f}" | |
.format(epoch, inf_metrics['rmsds_lt2'], inf_metrics['rmsds_lt5'])) | |
logs.update({'valinf_' + k: v for k, v in inf_metrics.items()}, step=epoch + 1) | |
if not args.use_ema: ema_weights.copy_to(model.parameters()) | |
ema_state_dict = copy.deepcopy(model.module.state_dict() if device.type == 'cuda' else model.state_dict()) | |
ema_weights.restore(model.parameters()) | |
if args.wandb: | |
logs.update({'train_' + k: v for k, v in train_losses.items()}) | |
logs.update({'val_' + k: v for k, v in val_losses.items()}) | |
logs['current_lr'] = optimizer.param_groups[0]['lr'] | |
wandb.log(logs, step=epoch + 1) | |
state_dict = model.module.state_dict() if device.type == 'cuda' else model.state_dict() | |
if args.inference_earlystop_metric in logs.keys() and \ | |
(args.inference_earlystop_goal == 'min' and logs[args.inference_earlystop_metric] <= best_val_inference_value or | |
args.inference_earlystop_goal == 'max' and logs[args.inference_earlystop_metric] >= best_val_inference_value): | |
best_val_inference_value = logs[args.inference_earlystop_metric] | |
best_val_inference_epoch = epoch | |
torch.save(state_dict, os.path.join(run_dir, 'best_inference_epoch_model.pt')) | |
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_inference_epoch_model.pt')) | |
if val_losses['loss'] <= best_val_loss: | |
best_val_loss = val_losses['loss'] | |
best_epoch = epoch | |
torch.save(state_dict, os.path.join(run_dir, 'best_model.pt')) | |
torch.save(ema_state_dict, os.path.join(run_dir, 'best_ema_model.pt')) | |
if scheduler: | |
if args.val_inference_freq is not None: | |
scheduler.step(best_val_inference_value) | |
else: | |
scheduler.step(val_losses['loss']) | |
torch.save({ | |
'epoch': epoch, | |
'model': state_dict, | |
'optimizer': optimizer.state_dict(), | |
'ema_weights': ema_weights.state_dict(), | |
}, os.path.join(run_dir, 'last_model.pt')) | |
print("Best Validation Loss {} on Epoch {}".format(best_val_loss, best_epoch)) | |
print("Best inference metric {} on Epoch {}".format(best_val_inference_value, best_val_inference_epoch)) | |
def main_function(): | |
args = parse_train_args() | |
if args.config: | |
config_dict = yaml.load(args.config, Loader=yaml.FullLoader) | |
arg_dict = args.__dict__ | |
for key, value in config_dict.items(): | |
if isinstance(value, list): | |
for v in value: | |
arg_dict[key].append(v) | |
else: | |
arg_dict[key] = value | |
args.config = args.config.name | |
assert (args.inference_earlystop_goal == 'max' or args.inference_earlystop_goal == 'min') | |
if args.val_inference_freq is not None and args.scheduler is not None: | |
assert (args.scheduler_patience > args.val_inference_freq) # otherwise we will just stop training after args.scheduler_patience epochs | |
if args.cudnn_benchmark: | |
torch.backends.cudnn.benchmark = True | |
# construct loader | |
t_to_sigma = partial(t_to_sigma_compl, args=args) | |
train_loader, val_loader = construct_loader(args, t_to_sigma) | |
model = get_model(args, device, t_to_sigma=t_to_sigma) | |
optimizer, scheduler = get_optimizer_and_scheduler(args, model, scheduler_mode=args.inference_earlystop_goal if args.val_inference_freq is not None else 'min') | |
ema_weights = ExponentialMovingAverage(model.parameters(),decay=args.ema_rate) | |
if args.restart_dir: | |
try: | |
dict = torch.load(f'{args.restart_dir}/last_model.pt', map_location=torch.device('cpu')) | |
if args.restart_lr is not None: dict['optimizer']['param_groups'][0]['lr'] = args.restart_lr | |
optimizer.load_state_dict(dict['optimizer']) | |
model.module.load_state_dict(dict['model'], strict=True) | |
if hasattr(args, 'ema_rate'): | |
ema_weights.load_state_dict(dict['ema_weights'], device=device) | |
print("Restarting from epoch", dict['epoch']) | |
except Exception as e: | |
print("Exception", e) | |
dict = torch.load(f'{args.restart_dir}/best_model.pt', map_location=torch.device('cpu')) | |
model.module.load_state_dict(dict, strict=True) | |
print("Due to exception had to take the best epoch and no optimiser") | |
numel = sum([p.numel() for p in model.parameters()]) | |
print('Model with', numel, 'parameters') | |
if args.wandb: | |
wandb.init( | |
entity='entity', | |
settings=wandb.Settings(start_method="fork"), | |
project=args.project, | |
name=args.run_name, | |
config=args | |
) | |
wandb.log({'numel': numel}) | |
# record parameters | |
run_dir = os.path.join(args.log_dir, args.run_name) | |
yaml_file_name = os.path.join(run_dir, 'model_parameters.yml') | |
save_yaml_file(yaml_file_name, args.__dict__) | |
args.device = device | |
train(args, model, optimizer, scheduler, ema_weights, train_loader, val_loader, t_to_sigma, run_dir) | |
if __name__ == '__main__': | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
main_function() |