Spaces:
Sleeping
Sleeping
# small script to extract the ligand and save it in a separate file because GNINA will use the ligand position as | |
# initial pose | |
import os | |
import shutil | |
import subprocess | |
import sys | |
import time | |
from argparse import ArgumentParser, FileType | |
from datetime import datetime | |
import numpy as np | |
import pandas as pd | |
from biopandas.pdb import PandasPdb | |
from rdkit import Chem | |
from rdkit.Chem import AllChem, MolToPDBFile | |
from scipy.spatial.distance import cdist | |
from datasets.pdbbind import read_mol | |
from utils.utils import read_strings_from_txt | |
parser = ArgumentParser() | |
parser.add_argument('--data_dir', type=str, default='data/PDBBind_processed', help='') | |
parser.add_argument('--file_suffix', type=str, default='_baseline_ligand', help='Path to folder with trained model and hyperparameters') | |
parser.add_argument('--results_path', type=str, default='results/gnina_predictions', help='') | |
parser.add_argument('--complex_names_path', type=str, default='data/splits/timesplit_test', help='') | |
parser.add_argument('--seed_molecules_path', type=str, default=None, help='Use the molecules at seed molecule path as initialization and only search around them') | |
parser.add_argument('--seed_molecule_filename', type=str, default='equibind_corrected.sdf', help='Use the molecules at seed molecule path as initialization and only search around them') | |
parser.add_argument('--smina', action='store_true', default=False, help='') | |
parser.add_argument('--no_gpu', action='store_true', default=False, help='') | |
parser.add_argument('--exhaustiveness', type=int, default=8, help='') | |
parser.add_argument('--num_cpu', type=int, default=16, help='') | |
parser.add_argument('--pocket_mode', action='store_true', default=False, help='') | |
parser.add_argument('--pocket_cutoff', type=int, default=5, help='') | |
parser.add_argument('--num_modes', type=int, default=10, help='') | |
parser.add_argument('--autobox_add', type=int, default=4, help='') | |
parser.add_argument('--use_p2rank_pocket', action='store_true', default=False, help='') | |
parser.add_argument('--skip_p2rank', action='store_true', default=False, help='') | |
parser.add_argument('--prank_path', type=str, default='/Users/hstark/projects/p2rank_2.3/prank', help='') | |
parser.add_argument('--skip_existing', action='store_true', default=False, help='') | |
args = parser.parse_args() | |
class Logger(object): | |
def __init__(self, logpath, syspart=sys.stdout): | |
self.terminal = syspart | |
self.log = open(logpath, "a") | |
def write(self, message): | |
self.terminal.write(message) | |
self.log.write(message) | |
self.log.flush() | |
def flush(self): | |
# this flush method is needed for python 3 compatibility. | |
# this handles the flush command by doing nothing. | |
# you might want to specify some extra behavior here. | |
pass | |
def log(*args): | |
print(f'[{datetime.now()}]', *args) | |
# parameters | |
names = read_strings_from_txt(args.complex_names_path) | |
if os.path.exists(args.results_path) and not args.skip_existing: | |
shutil.rmtree(args.results_path) | |
os.makedirs(args.results_path, exist_ok=True) | |
sys.stdout = Logger(logpath=f'{args.results_path}/gnina.log', syspart=sys.stdout) | |
sys.stderr = Logger(logpath=f'{args.results_path}/error.log', syspart=sys.stderr) | |
p2rank_cache_path = "results/.p2rank_cache" | |
if args.use_p2rank_pocket and not args.skip_p2rank: | |
os.makedirs(p2rank_cache_path, exist_ok=True) | |
pdb_files_cache = os.path.join(p2rank_cache_path,'pdb_files') | |
os.makedirs(pdb_files_cache, exist_ok=True) | |
with open(f"{p2rank_cache_path}/pdb_list_p2rank.txt", "w") as out: | |
for name in names: | |
shutil.copy(os.path.join(args.data_dir, name, f'{name}_protein_processed.pdb'), f'{pdb_files_cache}/{name}_protein_processed.pdb') | |
out.write(os.path.join('pdb_files', f'{name}_protein_processed.pdb\n')) | |
cmd = f"bash {args.prank_path} predict {p2rank_cache_path}/pdb_list_p2rank.txt -o {p2rank_cache_path}/p2rank_output -threads 4" | |
os.system(cmd) | |
all_times = [] | |
start_time = time.time() | |
for i, name in enumerate(names): | |
os.makedirs(os.path.join(args.results_path, name), exist_ok=True) | |
log('\n') | |
log(f'complex {i} of {len(names)}') | |
# call gnina to find binding pose | |
rec_path = os.path.join(args.data_dir, name, f'{name}_protein_processed.pdb') | |
prediction_output_name = os.path.join(args.results_path, name, f'{name}{args.file_suffix}.pdb') | |
log_path = os.path.join(args.results_path, name, f'{name}{args.file_suffix}.log') | |
if args.seed_molecules_path is not None: seed_mol_path = os.path.join(args.seed_molecules_path, name, f'{args.seed_molecule_filename}') | |
if args.skip_existing and os.path.exists(prediction_output_name): continue | |
if args.pocket_mode: | |
mol = read_mol(args.data_dir, name, remove_hs=False) | |
rec = PandasPdb().read_pdb(rec_path) | |
rec_df = rec.get(s='c-alpha') | |
rec_pos = rec_df[['x_coord', 'y_coord', 'z_coord']].to_numpy().squeeze().astype(np.float32) | |
lig_pos = mol.GetConformer().GetPositions() | |
d = cdist(rec_pos, lig_pos) | |
label = np.any(d < args.pocket_cutoff, axis=1) | |
if np.any(label): | |
center_pocket = rec_pos[label].mean(axis=0) | |
else: | |
print("No pocket residue below minimum distance ", args.pocket_cutoff, "taking closest at", np.min(d)) | |
center_pocket = rec_pos[np.argmin(np.min(d, axis=1)[0])] | |
radius_pocket = np.max(np.linalg.norm(lig_pos - center_pocket[None, :], axis=1)) | |
diameter_pocket = radius_pocket * 2 | |
center_x = center_pocket[0] | |
size_x = diameter_pocket + 8 | |
center_y = center_pocket[1] | |
size_y = diameter_pocket + 8 | |
center_z = center_pocket[2] | |
size_z = diameter_pocket + 8 | |
mol_rdkit = read_mol(args.data_dir, name, remove_hs=False) | |
single_time = time.time() | |
mol_rdkit.RemoveAllConformers() | |
ps = AllChem.ETKDGv2() | |
id = AllChem.EmbedMolecule(mol_rdkit, ps) | |
if id == -1: | |
print('rdkit pos could not be generated without using random pos. using random pos now.') | |
ps.useRandomCoords = True | |
AllChem.EmbedMolecule(mol_rdkit, ps) | |
AllChem.MMFFOptimizeMolecule(mol_rdkit, confId=0) | |
rdkit_mol_path = os.path.join(args.data_dir, name, f'{name}_rdkit_ligand.pdb') | |
MolToPDBFile(mol_rdkit, rdkit_mol_path) | |
fallback_without_p2rank = False | |
if args.use_p2rank_pocket: | |
df = pd.read_csv(f'{p2rank_cache_path}/p2rank_output/{name}_protein_processed.pdb_predictions.csv') | |
rdkit_lig_pos = mol_rdkit.GetConformer().GetPositions() | |
diameter_pocket = np.max(cdist(rdkit_lig_pos, rdkit_lig_pos)) | |
size_x = diameter_pocket + args.autobox_add * 2 | |
size_y = diameter_pocket + args.autobox_add * 2 | |
size_z = diameter_pocket + args.autobox_add * 2 | |
if df.empty: | |
fallback_without_p2rank = True | |
else: | |
center_x = df.iloc[0][' center_x'] | |
center_y = df.iloc[0][' center_y'] | |
center_z = df.iloc[0][' center_z'] | |
log(f'processing {rec_path}') | |
if not args.pocket_mode and not args.use_p2rank_pocket or fallback_without_p2rank: | |
return_code = subprocess.run( | |
f"gnina --receptor {rec_path} --ligand {rdkit_mol_path} --num_modes {args.num_modes} -o {prediction_output_name} {'--no_gpu' if args.no_gpu else ''} --autobox_ligand {rec_path if args.seed_molecules_path is None else seed_mol_path} --autobox_add {args.autobox_add} --log {log_path} --exhaustiveness {args.exhaustiveness} --cpu {args.num_cpu} {'--cnn_scoring none' if args.smina else ''}", | |
shell=True) | |
else: | |
return_code = subprocess.run( | |
f"gnina --receptor {rec_path} --ligand {rdkit_mol_path} --num_modes {args.num_modes} -o {prediction_output_name} {'--no_gpu' if args.no_gpu else ''} --log {log_path} --exhaustiveness {args.exhaustiveness} --cpu {args.num_cpu} {'--cnn_scoring none' if args.smina else ''} --center_x {center_x} --center_y {center_y} --center_z {center_z} --size_x {size_x} --size_y {size_y} --size_z {size_z}", | |
shell=True) | |
log(return_code) | |
all_times.append(time.time() - single_time) | |
log("single time: --- %s seconds ---" % (time.time() - single_time)) | |
log("time so far: --- %s seconds ---" % (time.time() - start_time)) | |
log('\n') | |
log(all_times) | |
log("--- %s seconds ---" % (time.time() - start_time)) | |