Spaces:
Running
on
T4
Running
on
T4
import numpy as np | |
import torch | |
from torch_geometric.loader import DataLoader | |
from utils.diffusion_utils import modify_conformer, set_time | |
from utils.torsion import modify_conformer_torsion_angles | |
from scipy.spatial.transform import Rotation as R | |
def randomize_position(data_list, no_torsion, no_random, tr_sigma_max): | |
# in place modification of the list | |
if not no_torsion: | |
# randomize torsion angles | |
for complex_graph in data_list: | |
torsion_updates = np.random.uniform(low=-np.pi, high=np.pi, size=complex_graph['ligand'].edge_mask.sum()) | |
complex_graph['ligand'].pos = \ | |
modify_conformer_torsion_angles(complex_graph['ligand'].pos, | |
complex_graph['ligand', 'ligand'].edge_index.T[ | |
complex_graph['ligand'].edge_mask], | |
complex_graph['ligand'].mask_rotate[0], torsion_updates) | |
for complex_graph in data_list: | |
# randomize position | |
molecule_center = torch.mean(complex_graph['ligand'].pos, dim=0, keepdim=True) | |
random_rotation = torch.from_numpy(R.random().as_matrix()).float() | |
complex_graph['ligand'].pos = (complex_graph['ligand'].pos - molecule_center) @ random_rotation.T | |
# base_rmsd = np.sqrt(np.sum((complex_graph['ligand'].pos.cpu().numpy() - orig_complex_graph['ligand'].pos.numpy()) ** 2, axis=1).mean()) | |
if not no_random: # note for now the torsion angles are still randomised | |
tr_update = torch.normal(mean=0, std=tr_sigma_max, size=(1, 3)) | |
complex_graph['ligand'].pos += tr_update | |
def sampling(data_list, model, inference_steps, tr_schedule, rot_schedule, tor_schedule, device, t_to_sigma, model_args, | |
no_random=False, ode=False, visualization_list=None, confidence_model=None, confidence_data_list=None, | |
confidence_model_args=None, batch_size=32, no_final_step_noise=False): | |
N = len(data_list) | |
for t_idx in range(inference_steps): | |
t_tr, t_rot, t_tor = tr_schedule[t_idx], rot_schedule[t_idx], tor_schedule[t_idx] | |
dt_tr = tr_schedule[t_idx] - tr_schedule[t_idx + 1] if t_idx < inference_steps - 1 else tr_schedule[t_idx] | |
dt_rot = rot_schedule[t_idx] - rot_schedule[t_idx + 1] if t_idx < inference_steps - 1 else rot_schedule[t_idx] | |
dt_tor = tor_schedule[t_idx] - tor_schedule[t_idx + 1] if t_idx < inference_steps - 1 else tor_schedule[t_idx] | |
loader = DataLoader(data_list, batch_size=batch_size) | |
new_data_list = [] | |
for complex_graph_batch in loader: | |
b = complex_graph_batch.num_graphs | |
complex_graph_batch = complex_graph_batch.to(device) | |
tr_sigma, rot_sigma, tor_sigma = t_to_sigma(t_tr, t_rot, t_tor) | |
set_time(complex_graph_batch, t_tr, t_rot, t_tor, b, model_args.all_atoms, device) | |
with torch.no_grad(): | |
tr_score, rot_score, tor_score = model(complex_graph_batch) | |
tr_g = tr_sigma * torch.sqrt(torch.tensor(2 * np.log(model_args.tr_sigma_max / model_args.tr_sigma_min))) | |
rot_g = 2 * rot_sigma * torch.sqrt(torch.tensor(np.log(model_args.rot_sigma_max / model_args.rot_sigma_min))) | |
if ode: | |
tr_perturb = (0.5 * tr_g ** 2 * dt_tr * tr_score.cpu()).cpu() | |
rot_perturb = (0.5 * rot_score.cpu() * dt_rot * rot_g ** 2).cpu() | |
else: | |
tr_z = torch.zeros((b, 3)) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \ | |
else torch.normal(mean=0, std=1, size=(b, 3)) | |
tr_perturb = (tr_g ** 2 * dt_tr * tr_score.cpu() + tr_g * np.sqrt(dt_tr) * tr_z).cpu() | |
rot_z = torch.zeros((b, 3)) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \ | |
else torch.normal(mean=0, std=1, size=(b, 3)) | |
rot_perturb = (rot_score.cpu() * dt_rot * rot_g ** 2 + rot_g * np.sqrt(dt_rot) * rot_z).cpu() | |
if not model_args.no_torsion: | |
tor_g = tor_sigma * torch.sqrt(torch.tensor(2 * np.log(model_args.tor_sigma_max / model_args.tor_sigma_min))) | |
if ode: | |
tor_perturb = (0.5 * tor_g ** 2 * dt_tor * tor_score.cpu()).numpy() | |
else: | |
tor_z = torch.zeros(tor_score.shape) if no_random or (no_final_step_noise and t_idx == inference_steps - 1) \ | |
else torch.normal(mean=0, std=1, size=tor_score.shape) | |
tor_perturb = (tor_g ** 2 * dt_tor * tor_score.cpu() + tor_g * np.sqrt(dt_tor) * tor_z).numpy() | |
torsions_per_molecule = tor_perturb.shape[0] // b | |
else: | |
tor_perturb = None | |
# Apply noise | |
new_data_list.extend([modify_conformer(complex_graph, tr_perturb[i:i + 1], rot_perturb[i:i + 1].squeeze(0), | |
tor_perturb[i * torsions_per_molecule:(i + 1) * torsions_per_molecule] if not model_args.no_torsion else None) | |
for i, complex_graph in enumerate(complex_graph_batch.to('cpu').to_data_list())]) | |
data_list = new_data_list | |
if visualization_list is not None: | |
for idx, visualization in enumerate(visualization_list): | |
visualization.add((data_list[idx]['ligand'].pos + data_list[idx].original_center).detach().cpu(), | |
part=1, order=t_idx + 2) | |
with torch.no_grad(): | |
if confidence_model is not None: | |
loader = DataLoader(data_list, batch_size=batch_size) | |
confidence_loader = iter(DataLoader(confidence_data_list, batch_size=batch_size)) | |
confidence = [] | |
for complex_graph_batch in loader: | |
complex_graph_batch = complex_graph_batch.to(device) | |
if confidence_data_list is not None: | |
confidence_complex_graph_batch = next(confidence_loader).to(device) | |
confidence_complex_graph_batch['ligand'].pos = complex_graph_batch['ligand'].pos | |
set_time(confidence_complex_graph_batch, 0, 0, 0, N, confidence_model_args.all_atoms, device) | |
confidence.append(confidence_model(confidence_complex_graph_batch)) | |
else: | |
confidence.append(confidence_model(complex_graph_batch)) | |
confidence = torch.cat(confidence, dim=0) | |
else: | |
confidence = None | |
return data_list, confidence | |