Spaces:
Sleeping
Sleeping
import itertools | |
import math | |
import os | |
import pickle | |
import random | |
from argparse import Namespace | |
from functools import partial | |
import copy | |
import numpy as np | |
import pandas as pd | |
import torch | |
import yaml | |
from torch_geometric.data import Dataset, Data | |
from torch_geometric.loader import DataLoader | |
from tqdm import tqdm | |
from datasets.pdbbind import PDBBind | |
from utils.diffusion_utils import get_t_schedule | |
from utils.sampling import randomize_position, sampling | |
from utils.utils import get_model | |
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl | |
class ListDataset(Dataset): | |
def __init__(self, list): | |
super().__init__() | |
self.data_list = list | |
def len(self) -> int: | |
return len(self.data_list) | |
def get(self, idx: int) -> Data: | |
return self.data_list[idx] | |
def get_cache_path(args, split): | |
cache_path = args.cache_path | |
if not args.no_torsion: | |
cache_path += '_torsion' | |
if args.all_atoms: | |
cache_path += '_allatoms' | |
split_path = args.split_train if split == 'train' else args.split_val | |
cache_path = os.path.join(cache_path, f'limit{args.limit_complexes}_INDEX{os.path.splitext(os.path.basename(split_path))[0]}_maxLigSize{args.max_lig_size}_H{int(not args.remove_hs)}_recRad{args.receptor_radius}_recMax{args.c_alpha_max_neighbors}' | |
+ ('' if not args.all_atoms else f'_atomRad{args.atom_radius}_atomMax{args.atom_max_neighbors}') | |
+ ('' if args.no_torsion or args.num_conformers == 1 else | |
f'_confs{args.num_conformers}') | |
+ ('' if args.esm_embeddings_path is None else f'_esmEmbeddings')) | |
return cache_path | |
def get_args_and_cache_path(original_model_dir, split): | |
with open(f'{original_model_dir}/model_parameters.yml') as f: | |
model_args = Namespace(**yaml.full_load(f)) | |
return model_args, get_cache_path(model_args,split) | |
class ConfidenceDataset(Dataset): | |
def __init__(self, cache_path, original_model_dir, split, device, limit_complexes, | |
inference_steps, samples_per_complex, all_atoms, | |
args, balance=False, use_original_model_cache=True, rmsd_classification_cutoff=2, | |
cache_ids_to_combine= None, cache_creation_id=None): | |
super(ConfidenceDataset, self).__init__() | |
self.device = device | |
self.inference_steps = inference_steps | |
self.limit_complexes = limit_complexes | |
self.all_atoms = all_atoms | |
self.original_model_dir = original_model_dir | |
self.balance = balance | |
self.use_original_model_cache = use_original_model_cache | |
self.rmsd_classification_cutoff = rmsd_classification_cutoff | |
self.cache_ids_to_combine = cache_ids_to_combine | |
self.cache_creation_id = cache_creation_id | |
self.samples_per_complex = samples_per_complex | |
self.original_model_args, original_model_cache = get_args_and_cache_path(original_model_dir, split) | |
self.complex_graphs_cache = original_model_cache if self.use_original_model_cache else get_cache_path(args, split) | |
print('Using the cached complex graphs of the original model args' if self.use_original_model_cache else 'Not using the cached complex graphs of the original model args. Instead the complex graphs are used that are at the location given by the dataset parameters given to confidence_train.py') | |
print(self.complex_graphs_cache) | |
if not os.path.exists(os.path.join(self.complex_graphs_cache, "heterographs.pkl")): | |
print(f'HAPPENING | Complex graphs path does not exist yet: {os.path.join(self.complex_graphs_cache, "heterographs.pkl")}. For that reason, we are now creating the dataset.') | |
PDBBind(transform=None, root=args.data_dir, limit_complexes=args.limit_complexes, | |
receptor_radius=args.receptor_radius, | |
cache_path=args.cache_path, split_path=args.split_val if split == 'val' else args.split_train, | |
remove_hs=args.remove_hs, max_lig_size=None, | |
c_alpha_max_neighbors=args.c_alpha_max_neighbors, | |
matching=not args.no_torsion, keep_original=True, | |
popsize=args.matching_popsize, | |
maxiter=args.matching_maxiter, | |
all_atoms=args.all_atoms, | |
atom_radius=args.atom_radius, | |
atom_max_neighbors=args.atom_max_neighbors, | |
esm_embeddings_path=args.esm_embeddings_path, | |
require_ligand=True) | |
print(f'HAPPENING | Loading complex graphs from: {os.path.join(self.complex_graphs_cache, "heterographs.pkl")}') | |
with open(os.path.join(self.complex_graphs_cache, "heterographs.pkl"), 'rb') as f: | |
complex_graphs = pickle.load(f) | |
self.complex_graph_dict = {d.name: d for d in complex_graphs} | |
self.full_cache_path = os.path.join(cache_path, f'model_{os.path.splitext(os.path.basename(original_model_dir))[0]}' | |
f'_split_{split}_limit_{limit_complexes}') | |
if (not os.path.exists(os.path.join(self.full_cache_path, "ligand_positions.pkl")) and self.cache_creation_id is None) or \ | |
(not os.path.exists(os.path.join(self.full_cache_path, f"ligand_positions_id{self.cache_creation_id}.pkl")) and self.cache_creation_id is not None): | |
os.makedirs(self.full_cache_path, exist_ok=True) | |
self.preprocessing(original_model_cache) | |
if self.cache_ids_to_combine is None: | |
print(f'HAPPENING | Loading positions and rmsds from: {os.path.join(self.full_cache_path, "ligand_positions.pkl")}') | |
with open(os.path.join(self.full_cache_path, "ligand_positions.pkl"), 'rb') as f: | |
self.full_ligand_positions, self.rmsds = pickle.load(f) | |
if os.path.exists(os.path.join(self.full_cache_path, "complex_names_in_same_order.pkl")): | |
with open(os.path.join(self.full_cache_path, "complex_names_in_same_order.pkl"), 'rb') as f: | |
generated_rmsd_complex_names = pickle.load(f) | |
else: | |
print('HAPPENING | The path, ', os.path.join(self.full_cache_path, "complex_names_in_same_order.pkl"), | |
' does not exist. \n => We assume that means that we are using a ligand_positions.pkl where the ' | |
'code was not saving the complex names for them yet. We now instead use the complex names of ' | |
'the dataset that the original model used to create the ligand positions and RMSDs.') | |
with open(os.path.join(original_model_cache, "heterographs.pkl"), 'rb') as f: | |
original_model_complex_graphs = pickle.load(f) | |
generated_rmsd_complex_names = [d.name for d in original_model_complex_graphs] | |
assert (len(self.rmsds) == len(generated_rmsd_complex_names)) | |
else: | |
all_rmsds_unsorted, all_full_ligand_positions_unsorted, all_names_unsorted = [], [], [] | |
for idx, cache_id in enumerate(self.cache_ids_to_combine): | |
print(f'HAPPENING | Loading positions and rmsds from cache_id from the path: {os.path.join(self.full_cache_path, "ligand_positions_"+ str(cache_id)+ ".pkl")}') | |
if not os.path.exists(os.path.join(self.full_cache_path, f"ligand_positions_id{cache_id}.pkl")): raise Exception(f'The generated ligand positions with cache_id do not exist: {cache_id}') # be careful with changing this error message since it is sometimes cought in a try catch | |
with open(os.path.join(self.full_cache_path, f"ligand_positions_id{cache_id}.pkl"), 'rb') as f: | |
full_ligand_positions, rmsds = pickle.load(f) | |
with open(os.path.join(self.full_cache_path, f"complex_names_in_same_order_id{cache_id}.pkl"), 'rb') as f: | |
names_unsorted = pickle.load(f) | |
all_names_unsorted.append(names_unsorted) | |
all_rmsds_unsorted.append(rmsds) | |
all_full_ligand_positions_unsorted.append(full_ligand_positions) | |
names_order = list(set(sum(all_names_unsorted, []))) | |
all_rmsds, all_full_ligand_positions, all_names = [], [], [] | |
for idx, (rmsds_unsorted, full_ligand_positions_unsorted, names_unsorted) in enumerate(zip(all_rmsds_unsorted,all_full_ligand_positions_unsorted, all_names_unsorted)): | |
name_to_pos_dict = {name: (rmsd, pos) for name, rmsd, pos in zip(names_unsorted, full_ligand_positions_unsorted, rmsds_unsorted) } | |
intermediate_rmsds = [name_to_pos_dict[name][1] for name in names_order] | |
all_rmsds.append((intermediate_rmsds)) | |
intermediate_pos = [name_to_pos_dict[name][0] for name in names_order] | |
all_full_ligand_positions.append((intermediate_pos)) | |
self.full_ligand_positions, self.rmsds = [], [] | |
for positions_tuple in list(zip(*all_full_ligand_positions)): | |
self.full_ligand_positions.append(np.concatenate(positions_tuple, axis=0)) | |
for positions_tuple in list(zip(*all_rmsds)): | |
self.rmsds.append(np.concatenate(positions_tuple, axis=0)) | |
generated_rmsd_complex_names = names_order | |
print('Number of complex graphs: ', len(self.complex_graph_dict)) | |
print('Number of RMSDs and positions for the complex graphs: ', len(self.full_ligand_positions)) | |
self.all_samples_per_complex = samples_per_complex * (1 if self.cache_ids_to_combine is None else len(self.cache_ids_to_combine)) | |
self.positions_rmsds_dict = {name: (pos, rmsd) for name, pos, rmsd in zip (generated_rmsd_complex_names, self.full_ligand_positions, self.rmsds)} | |
self.dataset_names = list(set(self.positions_rmsds_dict.keys()) & set(self.complex_graph_dict.keys())) | |
if limit_complexes > 0: | |
self.dataset_names = self.dataset_names[:limit_complexes] | |
def len(self): | |
return len(self.dataset_names) | |
def get(self, idx): | |
complex_graph = copy.deepcopy(self.complex_graph_dict[self.dataset_names[idx]]) | |
positions, rmsds = self.positions_rmsds_dict[self.dataset_names[idx]] | |
if self.balance: | |
if isinstance(self.rmsd_classification_cutoff, list): raise ValueError("a list for --rmsd_classification_cutoff can only be used without --balance") | |
label = random.randint(0, 1) | |
success = rmsds < self.rmsd_classification_cutoff | |
n_success = np.count_nonzero(success) | |
if label == 0 and n_success != self.all_samples_per_complex: | |
# sample negative complex | |
sample = random.randint(0, self.all_samples_per_complex - n_success - 1) | |
lig_pos = positions[~success][sample] | |
complex_graph['ligand'].pos = torch.from_numpy(lig_pos) | |
else: | |
# sample positive complex | |
if n_success > 0: # if no successfull sample returns the matched complex | |
sample = random.randint(0, n_success - 1) | |
lig_pos = positions[success][sample] | |
complex_graph['ligand'].pos = torch.from_numpy(lig_pos) | |
complex_graph.y = torch.tensor(label).float() | |
else: | |
sample = random.randint(0, self.all_samples_per_complex - 1) | |
complex_graph['ligand'].pos = torch.from_numpy(positions[sample]) | |
complex_graph.y = torch.tensor(rmsds[sample] < self.rmsd_classification_cutoff).float().unsqueeze(0) | |
if isinstance(self.rmsd_classification_cutoff, list): | |
complex_graph.y_binned = torch.tensor(np.logical_and(rmsds[sample] < self.rmsd_classification_cutoff + [math.inf],rmsds[sample] >= [0] + self.rmsd_classification_cutoff), dtype=torch.float).unsqueeze(0) | |
complex_graph.y = torch.tensor(rmsds[sample] < self.rmsd_classification_cutoff[0]).unsqueeze(0).float() | |
complex_graph.rmsd = torch.tensor(rmsds[sample]).unsqueeze(0).float() | |
complex_graph['ligand'].node_t = {'tr': 0 * torch.ones(complex_graph['ligand'].num_nodes), | |
'rot': 0 * torch.ones(complex_graph['ligand'].num_nodes), | |
'tor': 0 * torch.ones(complex_graph['ligand'].num_nodes)} | |
complex_graph['receptor'].node_t = {'tr': 0 * torch.ones(complex_graph['receptor'].num_nodes), | |
'rot': 0 * torch.ones(complex_graph['receptor'].num_nodes), | |
'tor': 0 * torch.ones(complex_graph['receptor'].num_nodes)} | |
if self.all_atoms: | |
complex_graph['atom'].node_t = {'tr': 0 * torch.ones(complex_graph['atom'].num_nodes), | |
'rot': 0 * torch.ones(complex_graph['atom'].num_nodes), | |
'tor': 0 * torch.ones(complex_graph['atom'].num_nodes)} | |
complex_graph.complex_t = {'tr': 0 * torch.ones(1), 'rot': 0 * torch.ones(1), 'tor': 0 * torch.ones(1)} | |
return complex_graph | |
def preprocessing(self, original_model_cache): | |
t_to_sigma = partial(t_to_sigma_compl, args=self.original_model_args) | |
model = get_model(self.original_model_args, self.device, t_to_sigma=t_to_sigma, no_parallel=True) | |
state_dict = torch.load(f'{self.original_model_dir}/best_model.pt', map_location=torch.device('cpu')) | |
model.load_state_dict(state_dict, strict=True) | |
model = model.to(self.device) | |
model.eval() | |
tr_schedule = get_t_schedule(inference_steps=self.inference_steps) | |
rot_schedule = tr_schedule | |
tor_schedule = tr_schedule | |
print('common t schedule', tr_schedule) | |
print('HAPPENING | loading cached complexes of the original model to create the confidence dataset RMSDs and predicted positions. Doing that from: ', os.path.join(self.complex_graphs_cache, "heterographs.pkl")) | |
with open(os.path.join(original_model_cache, "heterographs.pkl"), 'rb') as f: | |
complex_graphs = pickle.load(f) | |
dataset = ListDataset(complex_graphs) | |
loader = DataLoader(dataset=dataset, batch_size=1, shuffle=False) | |
rmsds, full_ligand_positions, names = [], [], [] | |
for idx, orig_complex_graph in tqdm(enumerate(loader)): | |
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(self.samples_per_complex)] | |
randomize_position(data_list, self.original_model_args.no_torsion, False, self.original_model_args.tr_sigma_max) | |
predictions_list = None | |
failed_convergence_counter = 0 | |
while predictions_list is None: | |
try: | |
predictions_list, confidences = sampling(data_list=data_list, model=model, inference_steps=self.inference_steps, | |
tr_schedule=tr_schedule, rot_schedule=rot_schedule, tor_schedule=tor_schedule, | |
device=self.device, t_to_sigma=t_to_sigma, model_args=self.original_model_args) | |
except Exception as e: | |
if 'failed to converge' in str(e): | |
failed_convergence_counter += 1 | |
if failed_convergence_counter > 5: | |
print('| WARNING: SVD failed to converge 5 times - skipping the complex') | |
break | |
print('| WARNING: SVD failed to converge - trying again with a new sample') | |
else: | |
raise e | |
if failed_convergence_counter > 5: predictions_list = data_list | |
if self.original_model_args.no_torsion: | |
orig_complex_graph['ligand'].orig_pos = (orig_complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy()) | |
filterHs = torch.not_equal(predictions_list[0]['ligand'].x[:, 0], 0).cpu().numpy() | |
if isinstance(orig_complex_graph['ligand'].orig_pos, list): | |
orig_complex_graph['ligand'].orig_pos = orig_complex_graph['ligand'].orig_pos[0] | |
ligand_pos = np.asarray([complex_graph['ligand'].pos.cpu().numpy()[filterHs] for complex_graph in predictions_list]) | |
orig_ligand_pos = np.expand_dims(orig_complex_graph['ligand'].orig_pos[filterHs] - orig_complex_graph.original_center.cpu().numpy(), axis=0) | |
rmsd = np.sqrt(((ligand_pos - orig_ligand_pos) ** 2).sum(axis=2).mean(axis=1)) | |
rmsds.append(rmsd) | |
full_ligand_positions.append(np.asarray([complex_graph['ligand'].pos.cpu().numpy() for complex_graph in predictions_list])) | |
names.append(orig_complex_graph.name[0]) | |
assert(len(orig_complex_graph.name) == 1) # I just put this assert here because of the above line where I assumed that the list is always only lenght 1. Just in case it isn't maybe check what the names in there are. | |
with open(os.path.join(self.full_cache_path, f"ligand_positions{'' if self.cache_creation_id is None else '_id' + str(self.cache_creation_id)}.pkl"), 'wb') as f: | |
pickle.dump((full_ligand_positions, rmsds), f) | |
with open(os.path.join(self.full_cache_path, f"complex_names_in_same_order{'' if self.cache_creation_id is None else '_id' + str(self.cache_creation_id)}.pkl"), 'wb') as f: | |
pickle.dump((names), f) | |