Spaces:
Running
on
T4
Running
on
T4
# This file needs to be ran in the TANKBind repository together with baseline_run_tankbind_parallel.sh | |
import sys | |
import time | |
from multiprocessing import Pool | |
import copy | |
import warnings | |
from argparse import ArgumentParser | |
from rdkit.Chem import AllChem, RemoveHs | |
from feature_utils import save_cleaned_protein, read_mol | |
from generation_utils import get_LAS_distance_constraint_mask, get_info_pred_distance, write_with_new_coords | |
import logging | |
from torch_geometric.loader import DataLoader | |
from tqdm import tqdm # pip install tqdm if fails. | |
from model import get_model | |
# from utils import * | |
import torch | |
from data import TankBind_prediction | |
import os | |
import numpy as np | |
import pandas as pd | |
import rdkit.Chem as Chem | |
from feature_utils import generate_sdf_from_smiles_using_rdkit | |
from feature_utils import get_protein_feature | |
from Bio.PDB import PDBParser | |
from feature_utils import extract_torchdrug_feature_from_mol | |
def read_strings_from_txt(path): | |
# every line will be one element of the returned list | |
with open(path) as file: | |
lines = file.readlines() | |
return [line.rstrip() for line in lines] | |
def read_molecule(molecule_file, sanitize=False, calc_charges=False, remove_hs=False): | |
if molecule_file.endswith('.mol2'): | |
mol = Chem.MolFromMol2File(molecule_file, sanitize=False, removeHs=False) | |
elif molecule_file.endswith('.sdf'): | |
supplier = Chem.SDMolSupplier(molecule_file, sanitize=False, removeHs=False) | |
mol = supplier[0] | |
elif molecule_file.endswith('.pdbqt'): | |
with open(molecule_file) as file: | |
pdbqt_data = file.readlines() | |
pdb_block = '' | |
for line in pdbqt_data: | |
pdb_block += '{}\n'.format(line[:66]) | |
mol = Chem.MolFromPDBBlock(pdb_block, sanitize=False, removeHs=False) | |
elif molecule_file.endswith('.pdb'): | |
mol = Chem.MolFromPDBFile(molecule_file, sanitize=False, removeHs=False) | |
else: | |
return ValueError('Expect the format of the molecule_file to be ' | |
'one of .mol2, .sdf, .pdbqt and .pdb, got {}'.format(molecule_file)) | |
try: | |
if sanitize or calc_charges: | |
Chem.SanitizeMol(mol) | |
if calc_charges: | |
# Compute Gasteiger charges on the molecule. | |
try: | |
AllChem.ComputeGasteigerCharges(mol) | |
except: | |
warnings.warn('Unable to compute charges for the molecule.') | |
if remove_hs: | |
mol = Chem.RemoveHs(mol, sanitize=sanitize) | |
except: | |
return None | |
return mol | |
def parallel_save_prediction(arguments): | |
dataset, y_pred_list, chosen,rdkit_mol_path, result_folder, name = arguments | |
for idx, line in chosen.iterrows(): | |
pocket_name = line['pocket_name'] | |
compound_name = line['compound_name'] | |
ligandName = compound_name.split("_")[1] | |
dataset_index = line['dataset_index'] | |
coords = dataset[dataset_index].coords.to('cpu') | |
protein_nodes_xyz = dataset[dataset_index].node_xyz.to('cpu') | |
n_compound = coords.shape[0] | |
n_protein = protein_nodes_xyz.shape[0] | |
y_pred = y_pred_list[dataset_index].reshape(n_protein, n_compound).to('cpu') | |
compound_pair_dis_constraint = torch.cdist(coords, coords) | |
mol = Chem.MolFromMolFile(rdkit_mol_path) | |
LAS_distance_constraint_mask = get_LAS_distance_constraint_mask(mol).bool() | |
pred_dist_info = get_info_pred_distance(coords, y_pred, protein_nodes_xyz, compound_pair_dis_constraint, | |
LAS_distance_constraint_mask=LAS_distance_constraint_mask, | |
n_repeat=1, show_progress=False) | |
toFile = f'{result_folder}/{name}_tankbind_chosen.sdf' | |
new_coords = pred_dist_info.sort_values("loss")['coords'].iloc[0].astype(np.double) | |
write_with_new_coords(mol, new_coords, toFile) | |
if __name__ == '__main__': | |
tankbind_src_folder = "../tankbind" | |
sys.path.insert(0, tankbind_src_folder) | |
torch.set_num_threads(16) | |
parser = ArgumentParser() | |
parser.add_argument('--data_dir', type=str, default='/Users/hstark/projects/ligbind/data/PDBBind_processed', help='') | |
parser.add_argument('--split_path', type=str, default='/Users/hstark/projects/ligbind/data/splits/timesplit_test', help='') | |
parser.add_argument('--prank_path', type=str, default='/Users/hstark/projects/p2rank_2.3/prank', help='') | |
parser.add_argument('--results_path', type=str, default='results/tankbind_results', help='') | |
parser.add_argument('--skip_existing', action='store_true', default=False, help='') | |
parser.add_argument('--skip_p2rank', action='store_true', default=False, help='') | |
parser.add_argument('--skip_multiple_pocket_outputs', action='store_true', default=False, help='') | |
parser.add_argument('--device', type=str, default='cpu', help='') | |
parser.add_argument('--num_workers', type=int, default=1, help='') | |
parser.add_argument('--parallel_id', type=int, default=0, help='') | |
parser.add_argument('--parallel_tot', type=int, default=1, help='') | |
args = parser.parse_args() | |
device = args.device | |
cache_path = "tankbind_cache" | |
os.makedirs(cache_path, exist_ok=True) | |
os.makedirs(args.results_path, exist_ok=True) | |
logging.basicConfig(level=logging.INFO) | |
model = get_model(0, logging, device) | |
# re-dock model | |
# modelFile = "../saved_models/re_dock.pt" | |
# self-dock model | |
modelFile = f"{tankbind_src_folder}/../saved_models/self_dock.pt" | |
model.load_state_dict(torch.load(modelFile, map_location=device)) | |
_ = model.eval() | |
batch_size = 5 | |
names = read_strings_from_txt(args.split_path) | |
if args.parallel_tot > 1: | |
size = len(names) // args.parallel_tot + 1 | |
names = names[args.parallel_id*size:(args.parallel_id+1)*size] | |
rmsds = [] | |
forward_pass_time = [] | |
times_preprocess = [] | |
times_inference = [] | |
top_10_generation_time = [] | |
top_1_generation_time = [] | |
start_time = time.time() | |
if not args.skip_p2rank: | |
for name in names: | |
if args.skip_existing and os.path.exists(f'{args.results_path}/{name}/{name}_tankbind_1.sdf'): continue | |
print("Now processing: ", name) | |
protein_path = f'{args.data_dir}/{name}/{name}_protein_processed.pdb' | |
cleaned_protein_path = f"{cache_path}/{name}_protein_tankbind_cleaned.pdb" # if you change this you also need to change below | |
parser = PDBParser(QUIET=True) | |
s = parser.get_structure(name, protein_path) | |
c = s[0] | |
clean_res_list, ligand_list = save_cleaned_protein(c, cleaned_protein_path) | |
with open(f"{cache_path}/pdb_list_p2rank.txt", "w") as out: | |
for name in names: | |
out.write(f"{name}_protein_tankbind_cleaned.pdb\n") | |
cmd = f"bash {args.prank_path} predict {cache_path}/pdb_list_p2rank.txt -o {cache_path}/p2rank -threads 4" | |
os.system(cmd) | |
times_preprocess.append(time.time() - start_time) | |
p2_rank_time = time.time() - start_time | |
list_to_parallelize = [] | |
for name in tqdm(names): | |
single_preprocess_time = time.time() | |
if args.skip_existing and os.path.exists(f'{args.results_path}/{name}/{name}_tankbind_1.sdf'): continue | |
print("Now processing: ", name) | |
protein_path = f'{args.data_dir}/{name}/{name}_protein_processed.pdb' | |
ligand_path = f"{args.data_dir}/{name}/{name}_ligand.sdf" | |
cleaned_protein_path = f"{cache_path}/{name}_protein_tankbind_cleaned.pdb" # if you change this you also need to change below | |
rdkit_mol_path = f"{cache_path}/{name}_rdkit_ligand.sdf" | |
parser = PDBParser(QUIET=True) | |
s = parser.get_structure(name, protein_path) | |
c = s[0] | |
clean_res_list, ligand_list = save_cleaned_protein(c, cleaned_protein_path) | |
lig, _ = read_mol(f"{args.data_dir}/{name}/{name}_ligand.sdf", f"{args.data_dir}/{name}/{name}_ligand.mol2") | |
lig = RemoveHs(lig) | |
smiles = Chem.MolToSmiles(lig) | |
generate_sdf_from_smiles_using_rdkit(smiles, rdkit_mol_path, shift_dis=0) | |
parser = PDBParser(QUIET=True) | |
s = parser.get_structure("x", cleaned_protein_path) | |
res_list = list(s.get_residues()) | |
protein_dict = {} | |
protein_dict[name] = get_protein_feature(res_list) | |
compound_dict = {} | |
mol = Chem.MolFromMolFile(rdkit_mol_path) | |
compound_dict[name + f"_{name}" + "_rdkit"] = extract_torchdrug_feature_from_mol(mol, has_LAS_mask=True) | |
info = [] | |
for compound_name in list(compound_dict.keys()): | |
# use protein center as the block center. | |
com = ",".join([str(a.round(3)) for a in protein_dict[name][0].mean(axis=0).numpy()]) | |
info.append([name, compound_name, "protein_center", com]) | |
p2rankFile = f"{cache_path}/p2rank/{name}_protein_tankbind_cleaned.pdb_predictions.csv" | |
pocket = pd.read_csv(p2rankFile) | |
pocket.columns = pocket.columns.str.strip() | |
pocket_coms = pocket[['center_x', 'center_y', 'center_z']].values | |
for ith_pocket, com in enumerate(pocket_coms): | |
com = ",".join([str(a.round(3)) for a in com]) | |
info.append([name, compound_name, f"pocket_{ith_pocket + 1}", com]) | |
info = pd.DataFrame(info, columns=['protein_name', 'compound_name', 'pocket_name', 'pocket_com']) | |
dataset_path = f"{cache_path}/{name}_dataset/" | |
os.system(f"rm -r {dataset_path}") | |
os.system(f"mkdir -p {dataset_path}") | |
dataset = TankBind_prediction(dataset_path, data=info, protein_dict=protein_dict, compound_dict=compound_dict) | |
# dataset = TankBind_prediction(dataset_path) | |
times_preprocess.append(time.time() - single_preprocess_time) | |
single_forward_pass_time = time.time() | |
data_loader = DataLoader(dataset, batch_size=batch_size, follow_batch=['x', 'y', 'compound_pair'], shuffle=False, | |
num_workers=0) | |
affinity_pred_list = [] | |
y_pred_list = [] | |
for data in tqdm(data_loader): | |
data = data.to(device) | |
y_pred, affinity_pred = model(data) | |
affinity_pred_list.append(affinity_pred.detach().cpu()) | |
for i in range(data.y_batch.max() + 1): | |
y_pred_list.append((y_pred[data['y_batch'] == i]).detach().cpu()) | |
affinity_pred_list = torch.cat(affinity_pred_list) | |
forward_pass_time.append(time.time() - single_forward_pass_time) | |
output_info = copy.deepcopy(dataset.data) | |
output_info['affinity'] = affinity_pred_list | |
output_info['dataset_index'] = range(len(output_info)) | |
output_info_sorted = output_info.sort_values('affinity', ascending=False) | |
result_folder = f'{args.results_path}/{name}' | |
os.makedirs(result_folder, exist_ok=True) | |
output_info_sorted.to_csv(f"{result_folder}/output_info_sorted_by_affinity.csv") | |
if not args.skip_multiple_pocket_outputs: | |
for idx, (dataframe_idx, line) in enumerate(copy.deepcopy(output_info_sorted).iterrows()): | |
single_top10_generation_time = time.time() | |
pocket_name = line['pocket_name'] | |
compound_name = line['compound_name'] | |
ligandName = compound_name.split("_")[1] | |
coords = dataset[dataframe_idx].coords.to('cpu') | |
protein_nodes_xyz = dataset[dataframe_idx].node_xyz.to('cpu') | |
n_compound = coords.shape[0] | |
n_protein = protein_nodes_xyz.shape[0] | |
y_pred = y_pred_list[dataframe_idx].reshape(n_protein, n_compound).to('cpu') | |
y = dataset[dataframe_idx].dis_map.reshape(n_protein, n_compound).to('cpu') | |
compound_pair_dis_constraint = torch.cdist(coords, coords) | |
mol = Chem.MolFromMolFile(rdkit_mol_path) | |
LAS_distance_constraint_mask = get_LAS_distance_constraint_mask(mol).bool() | |
pred_dist_info = get_info_pred_distance(coords, y_pred, protein_nodes_xyz, compound_pair_dis_constraint, | |
LAS_distance_constraint_mask=LAS_distance_constraint_mask, | |
n_repeat=1, show_progress=False) | |
toFile = f'{result_folder}/{name}_tankbind_{idx}.sdf' | |
new_coords = pred_dist_info.sort_values("loss")['coords'].iloc[0].astype(np.double) | |
write_with_new_coords(mol, new_coords, toFile) | |
if idx < 10: | |
top_10_generation_time.append(time.time() - single_top10_generation_time) | |
if idx == 0: | |
top_1_generation_time.append(time.time() - single_top10_generation_time) | |
output_info_chosen = copy.deepcopy(dataset.data) | |
output_info_chosen['affinity'] = affinity_pred_list | |
output_info_chosen['dataset_index'] = range(len(output_info_chosen)) | |
chosen = output_info_chosen.loc[ | |
output_info_chosen.groupby(['protein_name', 'compound_name'], sort=False)['affinity'].agg( | |
'idxmax')].reset_index() | |
list_to_parallelize.append((dataset, y_pred_list, chosen, rdkit_mol_path, result_folder, name)) | |
chosen_generation_start_time = time.time() | |
if args.num_workers > 1: | |
p = Pool(args.num_workers, maxtasksperchild=1) | |
p.__enter__() | |
with tqdm(total=len(list_to_parallelize), desc=f'running optimization {i}/{len(list_to_parallelize)}') as pbar: | |
map_fn = p.imap_unordered if args.num_workers > 1 else map | |
for t in map_fn(parallel_save_prediction, list_to_parallelize): | |
pbar.update() | |
if args.num_workers > 1: p.__exit__(None, None, None) | |
chosen_generation_time = time.time() - chosen_generation_start_time | |
""" | |
lig, _ = read_mol(f"{args.data_dir}/{name}/{name}_ligand.sdf", f"{args.data_dir}/{name}/{name}_ligand.mol2") | |
sm = Chem.MolToSmiles(lig) | |
m_order = list(lig.GetPropsAsDict(includePrivate=True, includeComputed=True)['_smilesAtomOutputOrder']) | |
lig = Chem.RenumberAtoms(lig, m_order) | |
lig = Chem.RemoveAllHs(lig) | |
lig = RemoveHs(lig) | |
true_ligand_pos = np.array(lig.GetConformer().GetPositions()) | |
toFile = f'{result_folder}/{name}_tankbind_chosen.sdf' | |
mol_pred, _ = read_mol(toFile, None) | |
sm = Chem.MolToSmiles(mol_pred) | |
m_order = list(mol_pred.GetPropsAsDict(includePrivate=True, includeComputed=True)['_smilesAtomOutputOrder']) | |
mol_pred = Chem.RenumberAtoms(mol_pred, m_order) | |
mol_pred = RemoveHs(mol_pred) | |
mol_pred_pos = np.array(mol_pred.GetConformer().GetPositions()) | |
rmsds.append(np.sqrt(((true_ligand_pos - mol_pred_pos) ** 2).sum(axis=1).mean(axis=0))) | |
print(np.sqrt(((true_ligand_pos - mol_pred_pos) ** 2).sum(axis=1).mean(axis=0))) | |
""" | |
forward_pass_time = np.array(forward_pass_time).sum() | |
times_preprocess = np.array(times_preprocess).sum() | |
times_inference = np.array(times_inference).sum() | |
top_10_generation_time = np.array(top_10_generation_time).sum() | |
top_1_generation_time = np.array(top_1_generation_time).sum() | |
rmsds = np.array(rmsds) | |
print(f'forward_pass_time: {forward_pass_time}') | |
print(f'times_preprocess: {times_preprocess}') | |
print(f'times_inference: {times_inference}') | |
print(f'top_10_generation_time: {top_10_generation_time}') | |
print(f'top_1_generation_time: {top_1_generation_time}') | |
print(f'chosen_generation_time: {chosen_generation_time}') | |
print(f'rmsds_below_2: {(100 * (rmsds < 2).sum() / len(rmsds))}') | |
print(f'p2rank Time: {p2_rank_time}') | |
print( | |
f'total_time: ' | |
f'{forward_pass_time + times_preprocess + times_inference + top_10_generation_time + top_1_generation_time + p2_rank_time}') | |
with open(os.path.join(args.results_path, 'tankbind_log.log'), 'w') as file: | |
file.write(f'forward_pass_time: {forward_pass_time}') | |
file.write(f'times_preprocess: {times_preprocess}') | |
file.write(f'times_inference: {times_inference}') | |
file.write(f'top_10_generation_time: {top_10_generation_time}') | |
file.write(f'top_1_generation_time: {top_1_generation_time}') | |
file.write(f'rmsds_below_2: {(100 * (rmsds < 2).sum() / len(rmsds))}') | |
file.write(f'p2rank Time: {p2_rank_time}') | |
file.write(f'total_time: {forward_pass_time + times_preprocess + times_inference + top_10_generation_time + top_1_generation_time + p2_rank_time}') | |