Spaces:
Sleeping
Sleeping
Simon Duerr
commited on
Commit
·
8397910
1
Parent(s):
5b916d3
add fast af and fixes
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- af_backprop/alphafold/model/folding.py +7 -9
- af_backprop/examples/AlphaFold_single.ipynb +120 -112
- alphafold/LICENSE +0 -202
- alphafold/alphafold/__init__.py +0 -14
- alphafold/alphafold/__pycache__/__init__.cpython-36.pyc +0 -0
- alphafold/alphafold/__pycache__/__init__.cpython-38.pyc +0 -0
- alphafold/alphafold/common/__init__.py +0 -14
- alphafold/alphafold/common/__pycache__/__init__.cpython-36.pyc +0 -0
- alphafold/alphafold/common/__pycache__/__init__.cpython-38.pyc +0 -0
- alphafold/alphafold/common/__pycache__/confidence.cpython-36.pyc +0 -0
- alphafold/alphafold/common/__pycache__/confidence.cpython-38.pyc +0 -0
- alphafold/alphafold/common/__pycache__/protein.cpython-36.pyc +0 -0
- alphafold/alphafold/common/__pycache__/protein.cpython-38.pyc +0 -0
- alphafold/alphafold/common/__pycache__/residue_constants.cpython-36.pyc +0 -0
- alphafold/alphafold/common/__pycache__/residue_constants.cpython-38.pyc +0 -0
- alphafold/alphafold/common/confidence.py +0 -155
- alphafold/alphafold/common/protein.py +0 -229
- alphafold/alphafold/common/protein_test.py +0 -89
- alphafold/alphafold/common/residue_constants.py +0 -895
- alphafold/alphafold/common/residue_constants_test.py +0 -190
- alphafold/alphafold/common/testdata/2rbg.pdb +0 -0
- alphafold/alphafold/data/__init__.py +0 -14
- alphafold/alphafold/data/__pycache__/__init__.cpython-36.pyc +0 -0
- alphafold/alphafold/data/__pycache__/__init__.cpython-38.pyc +0 -0
- alphafold/alphafold/data/__pycache__/mmcif_parsing.cpython-36.pyc +0 -0
- alphafold/alphafold/data/__pycache__/mmcif_parsing.cpython-38.pyc +0 -0
- alphafold/alphafold/data/__pycache__/parsers.cpython-36.pyc +0 -0
- alphafold/alphafold/data/__pycache__/parsers.cpython-38.pyc +0 -0
- alphafold/alphafold/data/__pycache__/pipeline.cpython-36.pyc +0 -0
- alphafold/alphafold/data/__pycache__/pipeline.cpython-38.pyc +0 -0
- alphafold/alphafold/data/__pycache__/templates.cpython-36.pyc +0 -0
- alphafold/alphafold/data/__pycache__/templates.cpython-38.pyc +0 -0
- alphafold/alphafold/data/mmcif_parsing.py +0 -384
- alphafold/alphafold/data/parsers.py +0 -364
- alphafold/alphafold/data/pipeline.py +0 -209
- alphafold/alphafold/data/templates.py +0 -922
- alphafold/alphafold/data/tools/__init__.py +0 -14
- alphafold/alphafold/data/tools/__pycache__/__init__.cpython-36.pyc +0 -0
- alphafold/alphafold/data/tools/__pycache__/__init__.cpython-38.pyc +0 -0
- alphafold/alphafold/data/tools/__pycache__/hhblits.cpython-36.pyc +0 -0
- alphafold/alphafold/data/tools/__pycache__/hhblits.cpython-38.pyc +0 -0
- alphafold/alphafold/data/tools/__pycache__/hhsearch.cpython-36.pyc +0 -0
- alphafold/alphafold/data/tools/__pycache__/hhsearch.cpython-38.pyc +0 -0
- alphafold/alphafold/data/tools/__pycache__/jackhmmer.cpython-36.pyc +0 -0
- alphafold/alphafold/data/tools/__pycache__/jackhmmer.cpython-38.pyc +0 -0
- alphafold/alphafold/data/tools/__pycache__/kalign.cpython-36.pyc +0 -0
- alphafold/alphafold/data/tools/__pycache__/kalign.cpython-38.pyc +0 -0
- alphafold/alphafold/data/tools/__pycache__/utils.cpython-36.pyc +0 -0
- alphafold/alphafold/data/tools/__pycache__/utils.cpython-38.pyc +0 -0
- alphafold/alphafold/data/tools/hhblits.py +0 -155
af_backprop/alphafold/model/folding.py
CHANGED
@@ -441,22 +441,20 @@ def generate_affines(representations, batch, config, global_config,
|
|
441 |
name='pair_layer_norm')(
|
442 |
representations['pair'])
|
443 |
|
444 |
-
def fold_iter(
|
445 |
-
|
446 |
-
|
447 |
-
x["act"],
|
448 |
initial_act=initial_act,
|
449 |
static_feat_2d=act_2d,
|
450 |
-
safe_key=key,
|
451 |
sequence_mask=sequence_mask,
|
452 |
update_affine=True,
|
453 |
is_training=is_training,
|
454 |
aatype=batch['aatype'],
|
455 |
scale_rate=batch["scale_rate"])
|
456 |
-
return
|
457 |
-
|
458 |
-
|
459 |
-
activations = x["act"]
|
460 |
|
461 |
# Include the activations in the output dict for use by the LDDT-Head.
|
462 |
output['act'] = activations['act']
|
|
|
441 |
name='pair_layer_norm')(
|
442 |
representations['pair'])
|
443 |
|
444 |
+
def fold_iter(act, key):
|
445 |
+
act, out = fold_iteration(
|
446 |
+
act,
|
|
|
447 |
initial_act=initial_act,
|
448 |
static_feat_2d=act_2d,
|
449 |
+
safe_key=prng.SafeKey(key),
|
450 |
sequence_mask=sequence_mask,
|
451 |
update_affine=True,
|
452 |
is_training=is_training,
|
453 |
aatype=batch['aatype'],
|
454 |
scale_rate=batch["scale_rate"])
|
455 |
+
return act, out
|
456 |
+
keys = jax.random.split(safe_key.get(), c.num_layer)
|
457 |
+
activations, output = hk.scan(fold_iter, activations, keys)
|
|
|
458 |
|
459 |
# Include the activations in the output dict for use by the LDDT-Head.
|
460 |
output['act'] = activations['act']
|
af_backprop/examples/AlphaFold_single.ipynb
CHANGED
@@ -32,7 +32,11 @@
|
|
32 |
"source": [
|
33 |
"#AlphaFold - single sequence input\n",
|
34 |
"- WARNING - For DEMO and educational purposes only. \n",
|
35 |
-
"- For natural proteins you often need more than a single sequence to accurately predict the structure. See [ColabFold](https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb) notebook if you want to predict the protein structure from a multiple-sequence-alignment. That being said, this notebook could
|
|
|
|
|
|
|
|
|
36 |
],
|
37 |
"metadata": {
|
38 |
"id": "VpfCw7IzVHXv"
|
@@ -42,12 +46,18 @@
|
|
42 |
"cell_type": "code",
|
43 |
"source": [
|
44 |
"#@title Setup\n",
|
|
|
|
|
45 |
"from IPython.utils import io\n",
|
46 |
"import os,sys,re\n",
|
47 |
"import tensorflow as tf\n",
|
48 |
"import jax\n",
|
49 |
"import jax.numpy as jnp\n",
|
50 |
"import numpy as np\n",
|
|
|
|
|
|
|
|
|
51 |
"\n",
|
52 |
"with io.capture_output() as captured:\n",
|
53 |
" if not os.path.isdir(\"af_backprop\"):\n",
|
@@ -58,6 +68,7 @@
|
|
58 |
" %shell mkdir params\n",
|
59 |
" %shell curl -fsSL https://storage.googleapis.com/alphafold/alphafold_params_2021-07-14.tar | tar x -C params\n",
|
60 |
"\n",
|
|
|
61 |
"try:\n",
|
62 |
" # check if TPU is available\n",
|
63 |
" import jax.tools.colab_tpu\n",
|
@@ -75,6 +86,7 @@
|
|
75 |
" tf.config.set_visible_devices([], 'GPU')\n",
|
76 |
"\n",
|
77 |
"sys.path.append('/content/af_backprop')\n",
|
|
|
78 |
"# import libraries\n",
|
79 |
"from utils import update_seq, update_aatype, get_plddt, get_pae\n",
|
80 |
"import colabfold as cf\n",
|
@@ -83,12 +95,12 @@
|
|
83 |
"from alphafold.model import data, config, model\n",
|
84 |
"from alphafold.common import residue_constants\n",
|
85 |
"\n",
|
|
|
86 |
"def clear_mem():\n",
|
87 |
" backend = jax.lib.xla_bridge.get_backend()\n",
|
88 |
" for buf in backend.live_buffers(): buf.delete()\n",
|
89 |
"\n",
|
90 |
"def setup_model(max_len, model_name=\"model_2_ptm\"):\n",
|
91 |
-
"\n",
|
92 |
" clear_mem()\n",
|
93 |
"\n",
|
94 |
" # setup model\n",
|
@@ -132,121 +144,27 @@
|
|
132 |
" \"init_pos\":outputs['structure_module']['final_atom_positions'][None]}\n",
|
133 |
" \n",
|
134 |
" aux = {\"final_atom_positions\":outputs[\"structure_module\"][\"final_atom_positions\"],\n",
|
135 |
-
"
|
136 |
-
"
|
137 |
-
"
|
138 |
" return aux\n",
|
139 |
"\n",
|
140 |
" return jax.jit(runner), {\"inputs\":inputs,\"params\":model_params}\n",
|
141 |
"\n",
|
142 |
-
"
|
143 |
-
"RUNNER, OPT = setup_model(MAX_LEN)"
|
144 |
-
],
|
145 |
-
"metadata": {
|
146 |
-
"cellView": "form",
|
147 |
-
"id": "24ybo88aBiSU"
|
148 |
-
},
|
149 |
-
"execution_count": null,
|
150 |
-
"outputs": []
|
151 |
-
},
|
152 |
-
{
|
153 |
-
"cell_type": "code",
|
154 |
-
"source": [
|
155 |
-
"%%time\n",
|
156 |
-
"#@title Enter the amino acid sequence to fold ⬇️\n",
|
157 |
-
"\n",
|
158 |
-
"sequence = 'GGGGGGGGGGGGGGGGGGGG' #@param {type:\"string\"}\n",
|
159 |
-
"recycles = 0 #@param [\"0\", \"1\", \"2\", \"3\", \"6\", \"12\", \"24\"] {type:\"raw\"}\n",
|
160 |
-
"SEQ = re.sub(\"[^A-Z]\", \"\", sequence.upper())\n",
|
161 |
-
"LEN = len(SEQ)\n",
|
162 |
-
"if LEN > MAX_LEN:\n",
|
163 |
-
" print(\"recompiling...\")\n",
|
164 |
-
" MAX_LEN = LEN\n",
|
165 |
-
" RUNNER, OPT = setup_model(MAX_LEN)\n",
|
166 |
-
"\n",
|
167 |
-
"x = np.array([residue_constants.restype_order.get(aa,0) for aa in SEQ])\n",
|
168 |
-
"x = np.pad(x,[0,MAX_LEN-LEN],constant_values=-1)\n",
|
169 |
-
"x = jax.nn.one_hot(x,20)\n",
|
170 |
-
"\n",
|
171 |
-
"OPT[\"prev\"] = {'init_msa_first_row': np.zeros([1, MAX_LEN, 256]),\n",
|
172 |
-
" 'init_pair': np.zeros([1, MAX_LEN, MAX_LEN, 128]),\n",
|
173 |
-
" 'init_pos': np.zeros([1, MAX_LEN, 37, 3])}\n",
|
174 |
-
"\n",
|
175 |
-
"positions = []\n",
|
176 |
-
"plddts = []\n",
|
177 |
-
"for r in range(recycles+1):\n",
|
178 |
-
" outs = RUNNER(x, OPT)\n",
|
179 |
-
" outs = jax.tree_map(lambda x:np.asarray(x), outs)\n",
|
180 |
-
" positions.append(outs[\"prev\"][\"init_pos\"][0,:LEN])\n",
|
181 |
-
" plddts.append(outs[\"plddt\"][:LEN])\n",
|
182 |
-
" OPT[\"prev\"] = outs[\"prev\"]\n",
|
183 |
-
" if recycles > 0:\n",
|
184 |
-
" print(r, plddts[-1].mean())"
|
185 |
-
],
|
186 |
-
"metadata": {
|
187 |
-
"cellView": "form",
|
188 |
-
"id": "cAoC4ar8G7ZH"
|
189 |
-
},
|
190 |
-
"execution_count": null,
|
191 |
-
"outputs": []
|
192 |
-
},
|
193 |
-
{
|
194 |
-
"cell_type": "code",
|
195 |
-
"source": [
|
196 |
-
"#@title Display 3D structure {run: \"auto\"}\n",
|
197 |
-
"color = \"lDDT\" #@param [\"chain\", \"lDDT\", \"rainbow\"]\n",
|
198 |
-
"show_sidechains = True #@param {type:\"boolean\"}\n",
|
199 |
-
"show_mainchains = False #@param {type:\"boolean\"}\n",
|
200 |
-
"#@markdown - TIP - hold mouse over aminoacid to get name and position number\n",
|
201 |
-
"\n",
|
202 |
-
"def save_pdb(outs, filename):\n",
|
203 |
" '''save pdb coordinates'''\n",
|
204 |
-
" p = {\"residue_index\":outs[\"inputs\"][\"residue_index\"][0]
|
205 |
-
"
|
206 |
-
"
|
207 |
-
"
|
208 |
-
"
|
|
|
|
|
209 |
" p = protein.Protein(**p,b_factors=b_factors)\n",
|
210 |
" pdb_lines = protein.to_pdb(p)\n",
|
211 |
-
" with open(filename, 'w') as f
|
212 |
-
" f.write(pdb_lines)\n",
|
213 |
-
"\n",
|
214 |
-
"save_pdb(outs,\"out.pdb\")\n",
|
215 |
-
"num_res = int(outs[\"inputs\"][\"aatype\"][0].sum())\n",
|
216 |
-
"\n",
|
217 |
-
"v = cf.show_pdb(\"out.pdb\", show_sidechains, show_mainchains, color,\n",
|
218 |
-
" color_HP=True, size=(800,480)) \n",
|
219 |
-
"v.setHoverable({},\n",
|
220 |
-
" True,\n",
|
221 |
-
" '''function(atom,viewer,event,container){if(!atom.label){atom.label=viewer.addLabel(\" \"+atom.resn+\":\"+atom.resi,{position:atom,backgroundColor:'mintcream',fontColor:'black'});}}''',\n",
|
222 |
-
" '''function(atom,viewer){if(atom.label){viewer.removeLabel(atom.label);delete atom.label;}}''')\n",
|
223 |
-
"v.show() \n",
|
224 |
-
"\n",
|
225 |
-
"if color == \"lDDT\":\n",
|
226 |
-
" cf.plot_plddt_legend().show() \n",
|
227 |
-
"if \"pae\" in outs:\n",
|
228 |
-
" cf.plot_confidence(outs[\"plddt\"][:LEN]*100, outs[\"pae\"][:LEN,:LEN]).show()\n",
|
229 |
-
"else:\n",
|
230 |
-
" cf.plot_confidence(outs[\"plddt\"][:LEN]*100).show()"
|
231 |
-
],
|
232 |
-
"metadata": {
|
233 |
-
"cellView": "form",
|
234 |
-
"id": "-KbUGG4ZOp0J"
|
235 |
-
},
|
236 |
-
"execution_count": null,
|
237 |
-
"outputs": []
|
238 |
-
},
|
239 |
-
{
|
240 |
-
"cell_type": "code",
|
241 |
-
"source": [
|
242 |
-
"#@title Animate\n",
|
243 |
-
"#@markdown - Animate trajectory if more than 0 recycle(s)\n",
|
244 |
-
"import matplotlib\n",
|
245 |
-
"from matplotlib import animation\n",
|
246 |
-
"import matplotlib.pyplot as plt\n",
|
247 |
-
"from IPython.display import HTML\n",
|
248 |
"\n",
|
249 |
-
"def make_animation(positions, plddts=None, line_w=2.0):\n",
|
250 |
"\n",
|
251 |
" def ca_align_to_last(positions):\n",
|
252 |
" def align(P, Q):\n",
|
@@ -269,7 +187,7 @@
|
|
269 |
" fig.subplots_adjust(top = 0.90, bottom = 0.10, right = 1, left = 0, hspace = 0, wspace = 0)\n",
|
270 |
" fig.set_figwidth(13)\n",
|
271 |
" fig.set_figheight(5)\n",
|
272 |
-
" fig.set_dpi(
|
273 |
"\n",
|
274 |
" xy_min = pos[...,:2].min() - 1\n",
|
275 |
" xy_max = pos[...,:2].max() + 1\n",
|
@@ -295,8 +213,98 @@
|
|
295 |
" \n",
|
296 |
" ani = animation.ArtistAnimation(fig, ims, blit=True, interval=120)\n",
|
297 |
" plt.close()\n",
|
298 |
-
" return ani.to_html5_video()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
"HTML(make_animation(np.asarray(positions),\n",
|
301 |
" np.asarray(plddts) * 100.0))"
|
302 |
],
|
@@ -308,4 +316,4 @@
|
|
308 |
"outputs": []
|
309 |
}
|
310 |
]
|
311 |
-
}
|
|
|
32 |
"source": [
|
33 |
"#AlphaFold - single sequence input\n",
|
34 |
"- WARNING - For DEMO and educational purposes only. \n",
|
35 |
+
"- For natural proteins you often need more than a single sequence to accurately predict the structure. See [ColabFold](https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb) notebook if you want to predict the protein structure from a multiple-sequence-alignment. That being said, this notebook could be useful for evaluating *de novo* designed proteins and learning the idealized principles of proteins.\n",
|
36 |
+
"\n",
|
37 |
+
"### Tips and Instructions\n",
|
38 |
+
"- click the little ▶ play icon to the left of each cell below.\n",
|
39 |
+
"- hold mouseover aminoacid to get name and position number"
|
40 |
],
|
41 |
"metadata": {
|
42 |
"id": "VpfCw7IzVHXv"
|
|
|
46 |
"cell_type": "code",
|
47 |
"source": [
|
48 |
"#@title Setup\n",
|
49 |
+
"\n",
|
50 |
+
"# import libraries\n",
|
51 |
"from IPython.utils import io\n",
|
52 |
"import os,sys,re\n",
|
53 |
"import tensorflow as tf\n",
|
54 |
"import jax\n",
|
55 |
"import jax.numpy as jnp\n",
|
56 |
"import numpy as np\n",
|
57 |
+
"import matplotlib\n",
|
58 |
+
"from matplotlib import animation\n",
|
59 |
+
"import matplotlib.pyplot as plt\n",
|
60 |
+
"from IPython.display import HTML\n",
|
61 |
"\n",
|
62 |
"with io.capture_output() as captured:\n",
|
63 |
" if not os.path.isdir(\"af_backprop\"):\n",
|
|
|
68 |
" %shell mkdir params\n",
|
69 |
" %shell curl -fsSL https://storage.googleapis.com/alphafold/alphafold_params_2021-07-14.tar | tar x -C params\n",
|
70 |
"\n",
|
71 |
+
"# configure which device to use\n",
|
72 |
"try:\n",
|
73 |
" # check if TPU is available\n",
|
74 |
" import jax.tools.colab_tpu\n",
|
|
|
86 |
" tf.config.set_visible_devices([], 'GPU')\n",
|
87 |
"\n",
|
88 |
"sys.path.append('/content/af_backprop')\n",
|
89 |
+
"\n",
|
90 |
"# import libraries\n",
|
91 |
"from utils import update_seq, update_aatype, get_plddt, get_pae\n",
|
92 |
"import colabfold as cf\n",
|
|
|
95 |
"from alphafold.model import data, config, model\n",
|
96 |
"from alphafold.common import residue_constants\n",
|
97 |
"\n",
|
98 |
+
"# custom functions\n",
|
99 |
"def clear_mem():\n",
|
100 |
" backend = jax.lib.xla_bridge.get_backend()\n",
|
101 |
" for buf in backend.live_buffers(): buf.delete()\n",
|
102 |
"\n",
|
103 |
"def setup_model(max_len, model_name=\"model_2_ptm\"):\n",
|
|
|
104 |
" clear_mem()\n",
|
105 |
"\n",
|
106 |
" # setup model\n",
|
|
|
144 |
" \"init_pos\":outputs['structure_module']['final_atom_positions'][None]}\n",
|
145 |
" \n",
|
146 |
" aux = {\"final_atom_positions\":outputs[\"structure_module\"][\"final_atom_positions\"],\n",
|
147 |
+
" \"final_atom_mask\":outputs[\"structure_module\"][\"final_atom_mask\"],\n",
|
148 |
+
" \"plddt\":get_plddt(outputs),\"pae\":get_pae(outputs),\n",
|
149 |
+
" \"inputs\":inputs, \"prev\":prev}\n",
|
150 |
" return aux\n",
|
151 |
"\n",
|
152 |
" return jax.jit(runner), {\"inputs\":inputs,\"params\":model_params}\n",
|
153 |
"\n",
|
154 |
+
"def save_pdb(outs, filename, LEN):\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
" '''save pdb coordinates'''\n",
|
156 |
+
" p = {\"residue_index\":outs[\"inputs\"][\"residue_index\"][0] + 1,\n",
|
157 |
+
" \"aatype\":outs[\"inputs\"][\"aatype\"].argmax(-1)[0],\n",
|
158 |
+
" \"atom_positions\":outs[\"final_atom_positions\"],\n",
|
159 |
+
" \"atom_mask\":outs[\"final_atom_mask\"],\n",
|
160 |
+
" \"plddt\":outs[\"plddt\"]}\n",
|
161 |
+
" p = jax.tree_map(lambda x:x[:LEN], p)\n",
|
162 |
+
" b_factors = 100.0 * p.pop(\"plddt\")[:,None] * p[\"atom_mask\"]\n",
|
163 |
" p = protein.Protein(**p,b_factors=b_factors)\n",
|
164 |
" pdb_lines = protein.to_pdb(p)\n",
|
165 |
+
" with open(filename, 'w') as f: f.write(pdb_lines)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
"\n",
|
167 |
+
"def make_animation(positions, plddts=None, line_w=2.0, dpi=100):\n",
|
168 |
"\n",
|
169 |
" def ca_align_to_last(positions):\n",
|
170 |
" def align(P, Q):\n",
|
|
|
187 |
" fig.subplots_adjust(top = 0.90, bottom = 0.10, right = 1, left = 0, hspace = 0, wspace = 0)\n",
|
188 |
" fig.set_figwidth(13)\n",
|
189 |
" fig.set_figheight(5)\n",
|
190 |
+
" fig.set_dpi(dpi)\n",
|
191 |
"\n",
|
192 |
" xy_min = pos[...,:2].min() - 1\n",
|
193 |
" xy_max = pos[...,:2].max() + 1\n",
|
|
|
213 |
" \n",
|
214 |
" ani = animation.ArtistAnimation(fig, ims, blit=True, interval=120)\n",
|
215 |
" plt.close()\n",
|
216 |
+
" return ani.to_html5_video()"
|
217 |
+
],
|
218 |
+
"metadata": {
|
219 |
+
"cellView": "form",
|
220 |
+
"id": "24ybo88aBiSU"
|
221 |
+
},
|
222 |
+
"execution_count": null,
|
223 |
+
"outputs": []
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"source": [
|
228 |
+
"%%time\n",
|
229 |
+
"#@title Enter the amino acid sequence to fold ⬇️\n",
|
230 |
+
"\n",
|
231 |
+
"# initialize model runner if doesn't exist\n",
|
232 |
+
"if \"runner\" not in dir():\n",
|
233 |
+
" max_length = 50\n",
|
234 |
+
" current_seq = \"\"\n",
|
235 |
+
" r = -1\n",
|
236 |
+
" runner, I = setup_model(max_length)\n",
|
237 |
+
"\n",
|
238 |
+
"# collect user inputs\n",
|
239 |
+
"sequence = 'GGGGGGGGGGGGGGGGGGGGG' #@param {type:\"string\"}\n",
|
240 |
+
"recycles = 0 #@param [\"0\", \"1\", \"2\", \"3\", \"6\", \"12\", \"24\"] {type:\"raw\"}\n",
|
241 |
+
"sequence = re.sub(\"[^A-Z]\", \"\", sequence.upper())\n",
|
242 |
+
"length = len(sequence)\n",
|
243 |
+
"\n",
|
244 |
+
"# if length greater than max_len, recompile for larger length\n",
|
245 |
+
"if length > max_length:\n",
|
246 |
+
" max_length = length + 10 # a little buffer\n",
|
247 |
+
" runner, I = setup_model(max_length)\n",
|
248 |
"\n",
|
249 |
+
"if sequence != current_seq:\n",
|
250 |
+
" outs = []\n",
|
251 |
+
" positions = []\n",
|
252 |
+
" plddts = []\n",
|
253 |
+
" paes = []\n",
|
254 |
+
" r = -1\n",
|
255 |
+
" # convert sequence to one_hot\n",
|
256 |
+
" x = np.array([residue_constants.restype_order.get(aa,0) for aa in sequence])\n",
|
257 |
+
" x = np.pad(x,[0,max_length-length],constant_values=-1)\n",
|
258 |
+
" x = jax.nn.one_hot(x,20)\n",
|
259 |
+
"\n",
|
260 |
+
" # restart recycle\n",
|
261 |
+
" I[\"prev\"] = {'init_msa_first_row': np.zeros([1, max_length, 256]),\n",
|
262 |
+
" 'init_pair': np.zeros([1, max_length, max_length, 128]),\n",
|
263 |
+
" 'init_pos': np.zeros([1, max_length, 37, 3])}\n",
|
264 |
+
" current_seq = sequence\n",
|
265 |
+
"\n",
|
266 |
+
"# run for defined number of recycles\n",
|
267 |
+
"while r < recycles:\n",
|
268 |
+
" O = runner(x, I)\n",
|
269 |
+
" O = jax.tree_map(lambda x:np.asarray(x), O)\n",
|
270 |
+
" positions.append(O[\"final_atom_positions\"][:length])\n",
|
271 |
+
" plddts.append(O[\"plddt\"][:length])\n",
|
272 |
+
" paes.append(O[\"pae\"][:length,:length])\n",
|
273 |
+
" I[\"prev\"] = O[\"prev\"]\n",
|
274 |
+
" outs.append(O)\n",
|
275 |
+
" r += 1\n",
|
276 |
+
"\n",
|
277 |
+
"#@markdown #### Display options\n",
|
278 |
+
"color = \"lDDT\" #@param [\"chain\", \"lDDT\", \"rainbow\"]\n",
|
279 |
+
"show_sidechains = True #@param {type:\"boolean\"}\n",
|
280 |
+
"show_mainchains = False #@param {type:\"boolean\"}\n",
|
281 |
+
"\n",
|
282 |
+
"print(f\"plotting prediction at recycle={recycles}\")\n",
|
283 |
+
"save_pdb(outs[recycles], \"out.pdb\", length)\n",
|
284 |
+
"v = cf.show_pdb(\"out.pdb\", show_sidechains, show_mainchains, color,\n",
|
285 |
+
" color_HP=True, size=(800,480)) \n",
|
286 |
+
"v.setHoverable({},\n",
|
287 |
+
" True,\n",
|
288 |
+
" '''function(atom,viewer,event,container){if(!atom.label){atom.label=viewer.addLabel(\" \"+atom.resn+\":\"+atom.resi,{position:atom,backgroundColor:'mintcream',fontColor:'black'});}}''',\n",
|
289 |
+
" '''function(atom,viewer){if(atom.label){viewer.removeLabel(atom.label);delete atom.label;}}''')\n",
|
290 |
+
"v.show() \n",
|
291 |
+
"if color == \"lDDT\": cf.plot_plddt_legend().show()\n",
|
292 |
+
"\n",
|
293 |
+
"# add confidence plots\n",
|
294 |
+
"cf.plot_confidence(plddts[recycles]*100, paes[recycles]).show()"
|
295 |
+
],
|
296 |
+
"metadata": {
|
297 |
+
"cellView": "form",
|
298 |
+
"id": "cAoC4ar8G7ZH"
|
299 |
+
},
|
300 |
+
"execution_count": null,
|
301 |
+
"outputs": []
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"cell_type": "code",
|
305 |
+
"source": [
|
306 |
+
"#@title Animate\n",
|
307 |
+
"#@markdown - Animate trajectory if more than 0 recycle(s)\n",
|
308 |
"HTML(make_animation(np.asarray(positions),\n",
|
309 |
" np.asarray(plddts) * 100.0))"
|
310 |
],
|
|
|
316 |
"outputs": []
|
317 |
}
|
318 |
]
|
319 |
+
}
|
alphafold/LICENSE
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
|
2 |
-
Apache License
|
3 |
-
Version 2.0, January 2004
|
4 |
-
http://www.apache.org/licenses/
|
5 |
-
|
6 |
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
-
|
8 |
-
1. Definitions.
|
9 |
-
|
10 |
-
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
-
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
-
|
13 |
-
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
-
the copyright owner that is granting the License.
|
15 |
-
|
16 |
-
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
-
other entities that control, are controlled by, or are under common
|
18 |
-
control with that entity. For the purposes of this definition,
|
19 |
-
"control" means (i) the power, direct or indirect, to cause the
|
20 |
-
direction or management of such entity, whether by contract or
|
21 |
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
-
|
24 |
-
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
-
exercising permissions granted by this License.
|
26 |
-
|
27 |
-
"Source" form shall mean the preferred form for making modifications,
|
28 |
-
including but not limited to software source code, documentation
|
29 |
-
source, and configuration files.
|
30 |
-
|
31 |
-
"Object" form shall mean any form resulting from mechanical
|
32 |
-
transformation or translation of a Source form, including but
|
33 |
-
not limited to compiled object code, generated documentation,
|
34 |
-
and conversions to other media types.
|
35 |
-
|
36 |
-
"Work" shall mean the work of authorship, whether in Source or
|
37 |
-
Object form, made available under the License, as indicated by a
|
38 |
-
copyright notice that is included in or attached to the work
|
39 |
-
(an example is provided in the Appendix below).
|
40 |
-
|
41 |
-
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
-
form, that is based on (or derived from) the Work and for which the
|
43 |
-
editorial revisions, annotations, elaborations, or other modifications
|
44 |
-
represent, as a whole, an original work of authorship. For the purposes
|
45 |
-
of this License, Derivative Works shall not include works that remain
|
46 |
-
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
-
the Work and Derivative Works thereof.
|
48 |
-
|
49 |
-
"Contribution" shall mean any work of authorship, including
|
50 |
-
the original version of the Work and any modifications or additions
|
51 |
-
to that Work or Derivative Works thereof, that is intentionally
|
52 |
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
-
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
-
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
-
means any form of electronic, verbal, or written communication sent
|
56 |
-
to the Licensor or its representatives, including but not limited to
|
57 |
-
communication on electronic mailing lists, source code control systems,
|
58 |
-
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
-
Licensor for the purpose of discussing and improving the Work, but
|
60 |
-
excluding communication that is conspicuously marked or otherwise
|
61 |
-
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
-
|
63 |
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
-
on behalf of whom a Contribution has been received by Licensor and
|
65 |
-
subsequently incorporated within the Work.
|
66 |
-
|
67 |
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
-
this License, each Contributor hereby grants to You a perpetual,
|
69 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
-
copyright license to reproduce, prepare Derivative Works of,
|
71 |
-
publicly display, publicly perform, sublicense, and distribute the
|
72 |
-
Work and such Derivative Works in Source or Object form.
|
73 |
-
|
74 |
-
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
-
this License, each Contributor hereby grants to You a perpetual,
|
76 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
-
(except as stated in this section) patent license to make, have made,
|
78 |
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
-
where such license applies only to those patent claims licensable
|
80 |
-
by such Contributor that are necessarily infringed by their
|
81 |
-
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
-
with the Work to which such Contribution(s) was submitted. If You
|
83 |
-
institute patent litigation against any entity (including a
|
84 |
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
-
or a Contribution incorporated within the Work constitutes direct
|
86 |
-
or contributory patent infringement, then any patent licenses
|
87 |
-
granted to You under this License for that Work shall terminate
|
88 |
-
as of the date such litigation is filed.
|
89 |
-
|
90 |
-
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
-
Work or Derivative Works thereof in any medium, with or without
|
92 |
-
modifications, and in Source or Object form, provided that You
|
93 |
-
meet the following conditions:
|
94 |
-
|
95 |
-
(a) You must give any other recipients of the Work or
|
96 |
-
Derivative Works a copy of this License; and
|
97 |
-
|
98 |
-
(b) You must cause any modified files to carry prominent notices
|
99 |
-
stating that You changed the files; and
|
100 |
-
|
101 |
-
(c) You must retain, in the Source form of any Derivative Works
|
102 |
-
that You distribute, all copyright, patent, trademark, and
|
103 |
-
attribution notices from the Source form of the Work,
|
104 |
-
excluding those notices that do not pertain to any part of
|
105 |
-
the Derivative Works; and
|
106 |
-
|
107 |
-
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
-
distribution, then any Derivative Works that You distribute must
|
109 |
-
include a readable copy of the attribution notices contained
|
110 |
-
within such NOTICE file, excluding those notices that do not
|
111 |
-
pertain to any part of the Derivative Works, in at least one
|
112 |
-
of the following places: within a NOTICE text file distributed
|
113 |
-
as part of the Derivative Works; within the Source form or
|
114 |
-
documentation, if provided along with the Derivative Works; or,
|
115 |
-
within a display generated by the Derivative Works, if and
|
116 |
-
wherever such third-party notices normally appear. The contents
|
117 |
-
of the NOTICE file are for informational purposes only and
|
118 |
-
do not modify the License. You may add Your own attribution
|
119 |
-
notices within Derivative Works that You distribute, alongside
|
120 |
-
or as an addendum to the NOTICE text from the Work, provided
|
121 |
-
that such additional attribution notices cannot be construed
|
122 |
-
as modifying the License.
|
123 |
-
|
124 |
-
You may add Your own copyright statement to Your modifications and
|
125 |
-
may provide additional or different license terms and conditions
|
126 |
-
for use, reproduction, or distribution of Your modifications, or
|
127 |
-
for any such Derivative Works as a whole, provided Your use,
|
128 |
-
reproduction, and distribution of the Work otherwise complies with
|
129 |
-
the conditions stated in this License.
|
130 |
-
|
131 |
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
-
any Contribution intentionally submitted for inclusion in the Work
|
133 |
-
by You to the Licensor shall be under the terms and conditions of
|
134 |
-
this License, without any additional terms or conditions.
|
135 |
-
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
-
the terms of any separate license agreement you may have executed
|
137 |
-
with Licensor regarding such Contributions.
|
138 |
-
|
139 |
-
6. Trademarks. This License does not grant permission to use the trade
|
140 |
-
names, trademarks, service marks, or product names of the Licensor,
|
141 |
-
except as required for reasonable and customary use in describing the
|
142 |
-
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
-
|
144 |
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
-
agreed to in writing, Licensor provides the Work (and each
|
146 |
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
-
implied, including, without limitation, any warranties or conditions
|
149 |
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
-
appropriateness of using or redistributing the Work and assume any
|
152 |
-
risks associated with Your exercise of permissions under this License.
|
153 |
-
|
154 |
-
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
-
whether in tort (including negligence), contract, or otherwise,
|
156 |
-
unless required by applicable law (such as deliberate and grossly
|
157 |
-
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
-
liable to You for damages, including any direct, indirect, special,
|
159 |
-
incidental, or consequential damages of any character arising as a
|
160 |
-
result of this License or out of the use or inability to use the
|
161 |
-
Work (including but not limited to damages for loss of goodwill,
|
162 |
-
work stoppage, computer failure or malfunction, or any and all
|
163 |
-
other commercial damages or losses), even if such Contributor
|
164 |
-
has been advised of the possibility of such damages.
|
165 |
-
|
166 |
-
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
-
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
-
or other liability obligations and/or rights consistent with this
|
170 |
-
License. However, in accepting such obligations, You may act only
|
171 |
-
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
-
of any other Contributor, and only if You agree to indemnify,
|
173 |
-
defend, and hold each Contributor harmless for any liability
|
174 |
-
incurred by, or claims asserted against, such Contributor by reason
|
175 |
-
of your accepting any such warranty or additional liability.
|
176 |
-
|
177 |
-
END OF TERMS AND CONDITIONS
|
178 |
-
|
179 |
-
APPENDIX: How to apply the Apache License to your work.
|
180 |
-
|
181 |
-
To apply the Apache License to your work, attach the following
|
182 |
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
-
replaced with your own identifying information. (Don't include
|
184 |
-
the brackets!) The text should be enclosed in the appropriate
|
185 |
-
comment syntax for the file format. We also recommend that a
|
186 |
-
file or class name and description of purpose be included on the
|
187 |
-
same "printed page" as the copyright notice for easier
|
188 |
-
identification within third-party archives.
|
189 |
-
|
190 |
-
Copyright [yyyy] [name of copyright owner]
|
191 |
-
|
192 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
-
you may not use this file except in compliance with the License.
|
194 |
-
You may obtain a copy of the License at
|
195 |
-
|
196 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
-
|
198 |
-
Unless required by applicable law or agreed to in writing, software
|
199 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
-
See the License for the specific language governing permissions and
|
202 |
-
limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/__init__.py
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""An implementation of the inference pipeline of AlphaFold v2.0."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/__pycache__/__init__.cpython-36.pyc
DELETED
Binary file (215 Bytes)
|
|
alphafold/alphafold/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (232 Bytes)
|
|
alphafold/alphafold/common/__init__.py
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""Common data types and constants used within Alphafold."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/common/__pycache__/__init__.cpython-36.pyc
DELETED
Binary file (214 Bytes)
|
|
alphafold/alphafold/common/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (231 Bytes)
|
|
alphafold/alphafold/common/__pycache__/confidence.cpython-36.pyc
DELETED
Binary file (4.07 kB)
|
|
alphafold/alphafold/common/__pycache__/confidence.cpython-38.pyc
DELETED
Binary file (4.08 kB)
|
|
alphafold/alphafold/common/__pycache__/protein.cpython-36.pyc
DELETED
Binary file (5.41 kB)
|
|
alphafold/alphafold/common/__pycache__/protein.cpython-38.pyc
DELETED
Binary file (5.48 kB)
|
|
alphafold/alphafold/common/__pycache__/residue_constants.cpython-36.pyc
DELETED
Binary file (23.9 kB)
|
|
alphafold/alphafold/common/__pycache__/residue_constants.cpython-38.pyc
DELETED
Binary file (20.2 kB)
|
|
alphafold/alphafold/common/confidence.py
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Functions for processing confidence metrics."""
|
16 |
-
|
17 |
-
from typing import Dict, Optional, Tuple
|
18 |
-
import numpy as np
|
19 |
-
import scipy.special
|
20 |
-
|
21 |
-
|
22 |
-
def compute_plddt(logits: np.ndarray) -> np.ndarray:
|
23 |
-
"""Computes per-residue pLDDT from logits.
|
24 |
-
|
25 |
-
Args:
|
26 |
-
logits: [num_res, num_bins] output from the PredictedLDDTHead.
|
27 |
-
|
28 |
-
Returns:
|
29 |
-
plddt: [num_res] per-residue pLDDT.
|
30 |
-
"""
|
31 |
-
num_bins = logits.shape[-1]
|
32 |
-
bin_width = 1.0 / num_bins
|
33 |
-
bin_centers = np.arange(start=0.5 * bin_width, stop=1.0, step=bin_width)
|
34 |
-
probs = scipy.special.softmax(logits, axis=-1)
|
35 |
-
predicted_lddt_ca = np.sum(probs * bin_centers[None, :], axis=-1)
|
36 |
-
return predicted_lddt_ca * 100
|
37 |
-
|
38 |
-
|
39 |
-
def _calculate_bin_centers(breaks: np.ndarray):
|
40 |
-
"""Gets the bin centers from the bin edges.
|
41 |
-
|
42 |
-
Args:
|
43 |
-
breaks: [num_bins - 1] the error bin edges.
|
44 |
-
|
45 |
-
Returns:
|
46 |
-
bin_centers: [num_bins] the error bin centers.
|
47 |
-
"""
|
48 |
-
step = (breaks[1] - breaks[0])
|
49 |
-
|
50 |
-
# Add half-step to get the center
|
51 |
-
bin_centers = breaks + step / 2
|
52 |
-
# Add a catch-all bin at the end.
|
53 |
-
bin_centers = np.concatenate([bin_centers, [bin_centers[-1] + step]],
|
54 |
-
axis=0)
|
55 |
-
return bin_centers
|
56 |
-
|
57 |
-
|
58 |
-
def _calculate_expected_aligned_error(
|
59 |
-
alignment_confidence_breaks: np.ndarray,
|
60 |
-
aligned_distance_error_probs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
61 |
-
"""Calculates expected aligned distance errors for every pair of residues.
|
62 |
-
|
63 |
-
Args:
|
64 |
-
alignment_confidence_breaks: [num_bins - 1] the error bin edges.
|
65 |
-
aligned_distance_error_probs: [num_res, num_res, num_bins] the predicted
|
66 |
-
probs for each error bin, for each pair of residues.
|
67 |
-
|
68 |
-
Returns:
|
69 |
-
predicted_aligned_error: [num_res, num_res] the expected aligned distance
|
70 |
-
error for each pair of residues.
|
71 |
-
max_predicted_aligned_error: The maximum predicted error possible.
|
72 |
-
"""
|
73 |
-
bin_centers = _calculate_bin_centers(alignment_confidence_breaks)
|
74 |
-
|
75 |
-
# Tuple of expected aligned distance error and max possible error.
|
76 |
-
return (np.sum(aligned_distance_error_probs * bin_centers, axis=-1),
|
77 |
-
np.asarray(bin_centers[-1]))
|
78 |
-
|
79 |
-
|
80 |
-
def compute_predicted_aligned_error(
|
81 |
-
logits: np.ndarray,
|
82 |
-
breaks: np.ndarray) -> Dict[str, np.ndarray]:
|
83 |
-
"""Computes aligned confidence metrics from logits.
|
84 |
-
|
85 |
-
Args:
|
86 |
-
logits: [num_res, num_res, num_bins] the logits output from
|
87 |
-
PredictedAlignedErrorHead.
|
88 |
-
breaks: [num_bins - 1] the error bin edges.
|
89 |
-
|
90 |
-
Returns:
|
91 |
-
aligned_confidence_probs: [num_res, num_res, num_bins] the predicted
|
92 |
-
aligned error probabilities over bins for each residue pair.
|
93 |
-
predicted_aligned_error: [num_res, num_res] the expected aligned distance
|
94 |
-
error for each pair of residues.
|
95 |
-
max_predicted_aligned_error: The maximum predicted error possible.
|
96 |
-
"""
|
97 |
-
aligned_confidence_probs = scipy.special.softmax(
|
98 |
-
logits,
|
99 |
-
axis=-1)
|
100 |
-
predicted_aligned_error, max_predicted_aligned_error = (
|
101 |
-
_calculate_expected_aligned_error(
|
102 |
-
alignment_confidence_breaks=breaks,
|
103 |
-
aligned_distance_error_probs=aligned_confidence_probs))
|
104 |
-
return {
|
105 |
-
'aligned_confidence_probs': aligned_confidence_probs,
|
106 |
-
'predicted_aligned_error': predicted_aligned_error,
|
107 |
-
'max_predicted_aligned_error': max_predicted_aligned_error,
|
108 |
-
}
|
109 |
-
|
110 |
-
|
111 |
-
def predicted_tm_score(
|
112 |
-
logits: np.ndarray,
|
113 |
-
breaks: np.ndarray,
|
114 |
-
residue_weights: Optional[np.ndarray] = None) -> np.ndarray:
|
115 |
-
"""Computes predicted TM alignment score.
|
116 |
-
|
117 |
-
Args:
|
118 |
-
logits: [num_res, num_res, num_bins] the logits output from
|
119 |
-
PredictedAlignedErrorHead.
|
120 |
-
breaks: [num_bins] the error bins.
|
121 |
-
residue_weights: [num_res] the per residue weights to use for the
|
122 |
-
expectation.
|
123 |
-
|
124 |
-
Returns:
|
125 |
-
ptm_score: the predicted TM alignment score.
|
126 |
-
"""
|
127 |
-
|
128 |
-
# residue_weights has to be in [0, 1], but can be floating-point, i.e. the
|
129 |
-
# exp. resolved head's probability.
|
130 |
-
if residue_weights is None:
|
131 |
-
residue_weights = np.ones(logits.shape[0])
|
132 |
-
|
133 |
-
bin_centers = _calculate_bin_centers(breaks)
|
134 |
-
|
135 |
-
num_res = np.sum(residue_weights)
|
136 |
-
# Clip num_res to avoid negative/undefined d0.
|
137 |
-
clipped_num_res = max(num_res, 19)
|
138 |
-
|
139 |
-
# Compute d_0(num_res) as defined by TM-score, eqn. (5) in
|
140 |
-
# http://zhanglab.ccmb.med.umich.edu/papers/2004_3.pdf
|
141 |
-
# Yang & Skolnick "Scoring function for automated
|
142 |
-
# assessment of protein structure template quality" 2004
|
143 |
-
d0 = 1.24 * (clipped_num_res - 15) ** (1./3) - 1.8
|
144 |
-
|
145 |
-
# Convert logits to probs
|
146 |
-
probs = scipy.special.softmax(logits, axis=-1)
|
147 |
-
|
148 |
-
# TM-Score term for every bin
|
149 |
-
tm_per_bin = 1. / (1 + np.square(bin_centers) / np.square(d0))
|
150 |
-
# E_distances tm(distance)
|
151 |
-
predicted_tm_term = np.sum(probs * tm_per_bin, axis=-1)
|
152 |
-
|
153 |
-
normed_residue_mask = residue_weights / (1e-8 + residue_weights.sum())
|
154 |
-
per_alignment = np.sum(predicted_tm_term * normed_residue_mask, axis=-1)
|
155 |
-
return np.asarray(per_alignment[(per_alignment * residue_weights).argmax()])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/common/protein.py
DELETED
@@ -1,229 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Protein data type."""
|
16 |
-
import dataclasses
|
17 |
-
import io
|
18 |
-
from typing import Any, Mapping, Optional
|
19 |
-
from alphafold.common import residue_constants
|
20 |
-
from Bio.PDB import PDBParser
|
21 |
-
import numpy as np
|
22 |
-
|
23 |
-
FeatureDict = Mapping[str, np.ndarray]
|
24 |
-
ModelOutput = Mapping[str, Any] # Is a nested dict.
|
25 |
-
|
26 |
-
|
27 |
-
@dataclasses.dataclass(frozen=True)
|
28 |
-
class Protein:
|
29 |
-
"""Protein structure representation."""
|
30 |
-
|
31 |
-
# Cartesian coordinates of atoms in angstroms. The atom types correspond to
|
32 |
-
# residue_constants.atom_types, i.e. the first three are N, CA, CB.
|
33 |
-
atom_positions: np.ndarray # [num_res, num_atom_type, 3]
|
34 |
-
|
35 |
-
# Amino-acid type for each residue represented as an integer between 0 and
|
36 |
-
# 20, where 20 is 'X'.
|
37 |
-
aatype: np.ndarray # [num_res]
|
38 |
-
|
39 |
-
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
|
40 |
-
# is present and 0.0 if not. This should be used for loss masking.
|
41 |
-
atom_mask: np.ndarray # [num_res, num_atom_type]
|
42 |
-
|
43 |
-
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
|
44 |
-
residue_index: np.ndarray # [num_res]
|
45 |
-
|
46 |
-
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
|
47 |
-
# representing the displacement of the residue from its ground truth mean
|
48 |
-
# value.
|
49 |
-
b_factors: np.ndarray # [num_res, num_atom_type]
|
50 |
-
|
51 |
-
|
52 |
-
def from_pdb_string(pdb_str: str, chain_id: Optional[str] = None) -> Protein:
|
53 |
-
"""Takes a PDB string and constructs a Protein object.
|
54 |
-
|
55 |
-
WARNING: All non-standard residue types will be converted into UNK. All
|
56 |
-
non-standard atoms will be ignored.
|
57 |
-
|
58 |
-
Args:
|
59 |
-
pdb_str: The contents of the pdb file
|
60 |
-
chain_id: If None, then the pdb file must contain a single chain (which
|
61 |
-
will be parsed). If chain_id is specified (e.g. A), then only that chain
|
62 |
-
is parsed.
|
63 |
-
|
64 |
-
Returns:
|
65 |
-
A new `Protein` parsed from the pdb contents.
|
66 |
-
"""
|
67 |
-
pdb_fh = io.StringIO(pdb_str)
|
68 |
-
parser = PDBParser(QUIET=True)
|
69 |
-
structure = parser.get_structure('none', pdb_fh)
|
70 |
-
models = list(structure.get_models())
|
71 |
-
if len(models) != 1:
|
72 |
-
raise ValueError(
|
73 |
-
f'Only single model PDBs are supported. Found {len(models)} models.')
|
74 |
-
model = models[0]
|
75 |
-
|
76 |
-
if chain_id is not None:
|
77 |
-
chain = model[chain_id]
|
78 |
-
else:
|
79 |
-
chains = list(model.get_chains())
|
80 |
-
if len(chains) != 1:
|
81 |
-
raise ValueError(
|
82 |
-
'Only single chain PDBs are supported when chain_id not specified. '
|
83 |
-
f'Found {len(chains)} chains.')
|
84 |
-
else:
|
85 |
-
chain = chains[0]
|
86 |
-
|
87 |
-
atom_positions = []
|
88 |
-
aatype = []
|
89 |
-
atom_mask = []
|
90 |
-
residue_index = []
|
91 |
-
b_factors = []
|
92 |
-
|
93 |
-
for res in chain:
|
94 |
-
if res.id[2] != ' ':
|
95 |
-
raise ValueError(
|
96 |
-
f'PDB contains an insertion code at chain {chain.id} and residue '
|
97 |
-
f'index {res.id[1]}. These are not supported.')
|
98 |
-
res_shortname = residue_constants.restype_3to1.get(res.resname, 'X')
|
99 |
-
restype_idx = residue_constants.restype_order.get(
|
100 |
-
res_shortname, residue_constants.restype_num)
|
101 |
-
pos = np.zeros((residue_constants.atom_type_num, 3))
|
102 |
-
mask = np.zeros((residue_constants.atom_type_num,))
|
103 |
-
res_b_factors = np.zeros((residue_constants.atom_type_num,))
|
104 |
-
for atom in res:
|
105 |
-
if atom.name not in residue_constants.atom_types:
|
106 |
-
continue
|
107 |
-
pos[residue_constants.atom_order[atom.name]] = atom.coord
|
108 |
-
mask[residue_constants.atom_order[atom.name]] = 1.
|
109 |
-
res_b_factors[residue_constants.atom_order[atom.name]] = atom.bfactor
|
110 |
-
if np.sum(mask) < 0.5:
|
111 |
-
# If no known atom positions are reported for the residue then skip it.
|
112 |
-
continue
|
113 |
-
aatype.append(restype_idx)
|
114 |
-
atom_positions.append(pos)
|
115 |
-
atom_mask.append(mask)
|
116 |
-
residue_index.append(res.id[1])
|
117 |
-
b_factors.append(res_b_factors)
|
118 |
-
|
119 |
-
return Protein(
|
120 |
-
atom_positions=np.array(atom_positions),
|
121 |
-
atom_mask=np.array(atom_mask),
|
122 |
-
aatype=np.array(aatype),
|
123 |
-
residue_index=np.array(residue_index),
|
124 |
-
b_factors=np.array(b_factors))
|
125 |
-
|
126 |
-
|
127 |
-
def to_pdb(prot: Protein) -> str:
|
128 |
-
"""Converts a `Protein` instance to a PDB string.
|
129 |
-
|
130 |
-
Args:
|
131 |
-
prot: The protein to convert to PDB.
|
132 |
-
|
133 |
-
Returns:
|
134 |
-
PDB string.
|
135 |
-
"""
|
136 |
-
restypes = residue_constants.restypes + ['X']
|
137 |
-
res_1to3 = lambda r: residue_constants.restype_1to3.get(restypes[r], 'UNK')
|
138 |
-
atom_types = residue_constants.atom_types
|
139 |
-
|
140 |
-
pdb_lines = []
|
141 |
-
|
142 |
-
atom_mask = prot.atom_mask
|
143 |
-
aatype = prot.aatype
|
144 |
-
atom_positions = prot.atom_positions
|
145 |
-
residue_index = prot.residue_index.astype(np.int32)
|
146 |
-
b_factors = prot.b_factors
|
147 |
-
|
148 |
-
if np.any(aatype > residue_constants.restype_num):
|
149 |
-
raise ValueError('Invalid aatypes.')
|
150 |
-
|
151 |
-
pdb_lines.append('MODEL 1')
|
152 |
-
atom_index = 1
|
153 |
-
chain_id = 'A'
|
154 |
-
# Add all atom sites.
|
155 |
-
for i in range(aatype.shape[0]):
|
156 |
-
res_name_3 = res_1to3(aatype[i])
|
157 |
-
for atom_name, pos, mask, b_factor in zip(
|
158 |
-
atom_types, atom_positions[i], atom_mask[i], b_factors[i]):
|
159 |
-
if mask < 0.5:
|
160 |
-
continue
|
161 |
-
|
162 |
-
record_type = 'ATOM'
|
163 |
-
name = atom_name if len(atom_name) == 4 else f' {atom_name}'
|
164 |
-
alt_loc = ''
|
165 |
-
insertion_code = ''
|
166 |
-
occupancy = 1.00
|
167 |
-
element = atom_name[0] # Protein supports only C, N, O, S, this works.
|
168 |
-
charge = ''
|
169 |
-
# PDB is a columnar format, every space matters here!
|
170 |
-
atom_line = (f'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}'
|
171 |
-
f'{res_name_3:>3} {chain_id:>1}'
|
172 |
-
f'{residue_index[i]:>4}{insertion_code:>1} '
|
173 |
-
f'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}'
|
174 |
-
f'{occupancy:>6.2f}{b_factor:>6.2f} '
|
175 |
-
f'{element:>2}{charge:>2}')
|
176 |
-
pdb_lines.append(atom_line)
|
177 |
-
atom_index += 1
|
178 |
-
|
179 |
-
# Close the chain.
|
180 |
-
chain_end = 'TER'
|
181 |
-
chain_termination_line = (
|
182 |
-
f'{chain_end:<6}{atom_index:>5} {res_1to3(aatype[-1]):>3} '
|
183 |
-
f'{chain_id:>1}{residue_index[-1]:>4}')
|
184 |
-
pdb_lines.append(chain_termination_line)
|
185 |
-
pdb_lines.append('ENDMDL')
|
186 |
-
|
187 |
-
pdb_lines.append('END')
|
188 |
-
pdb_lines.append('')
|
189 |
-
return '\n'.join(pdb_lines)
|
190 |
-
|
191 |
-
|
192 |
-
def ideal_atom_mask(prot: Protein) -> np.ndarray:
|
193 |
-
"""Computes an ideal atom mask.
|
194 |
-
|
195 |
-
`Protein.atom_mask` typically is defined according to the atoms that are
|
196 |
-
reported in the PDB. This function computes a mask according to heavy atoms
|
197 |
-
that should be present in the given sequence of amino acids.
|
198 |
-
|
199 |
-
Args:
|
200 |
-
prot: `Protein` whose fields are `numpy.ndarray` objects.
|
201 |
-
|
202 |
-
Returns:
|
203 |
-
An ideal atom mask.
|
204 |
-
"""
|
205 |
-
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
|
206 |
-
|
207 |
-
|
208 |
-
def from_prediction(features: FeatureDict, result: ModelOutput,
|
209 |
-
b_factors: Optional[np.ndarray] = None) -> Protein:
|
210 |
-
"""Assembles a protein from a prediction.
|
211 |
-
|
212 |
-
Args:
|
213 |
-
features: Dictionary holding model inputs.
|
214 |
-
result: Dictionary holding model outputs.
|
215 |
-
b_factors: (Optional) B-factors to use for the protein.
|
216 |
-
|
217 |
-
Returns:
|
218 |
-
A protein instance.
|
219 |
-
"""
|
220 |
-
fold_output = result['structure_module']
|
221 |
-
if b_factors is None:
|
222 |
-
b_factors = np.zeros_like(fold_output['final_atom_mask'])
|
223 |
-
|
224 |
-
return Protein(
|
225 |
-
aatype=features['aatype'][0],
|
226 |
-
atom_positions=fold_output['final_atom_positions'],
|
227 |
-
atom_mask=fold_output['final_atom_mask'],
|
228 |
-
residue_index=features['residue_index'][0] + 1,
|
229 |
-
b_factors=b_factors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/common/protein_test.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Tests for protein."""
|
16 |
-
|
17 |
-
import os
|
18 |
-
|
19 |
-
from absl.testing import absltest
|
20 |
-
from absl.testing import parameterized
|
21 |
-
from alphafold.common import protein
|
22 |
-
from alphafold.common import residue_constants
|
23 |
-
import numpy as np
|
24 |
-
# Internal import (7716).
|
25 |
-
|
26 |
-
TEST_DATA_DIR = 'alphafold/common/testdata/'
|
27 |
-
|
28 |
-
|
29 |
-
class ProteinTest(parameterized.TestCase):
|
30 |
-
|
31 |
-
def _check_shapes(self, prot, num_res):
|
32 |
-
"""Check that the processed shapes are correct."""
|
33 |
-
num_atoms = residue_constants.atom_type_num
|
34 |
-
self.assertEqual((num_res, num_atoms, 3), prot.atom_positions.shape)
|
35 |
-
self.assertEqual((num_res,), prot.aatype.shape)
|
36 |
-
self.assertEqual((num_res, num_atoms), prot.atom_mask.shape)
|
37 |
-
self.assertEqual((num_res,), prot.residue_index.shape)
|
38 |
-
self.assertEqual((num_res, num_atoms), prot.b_factors.shape)
|
39 |
-
|
40 |
-
@parameterized.parameters(('2rbg.pdb', 'A', 282),
|
41 |
-
('2rbg.pdb', 'B', 282))
|
42 |
-
def test_from_pdb_str(self, pdb_file, chain_id, num_res):
|
43 |
-
pdb_file = os.path.join(absltest.get_default_test_srcdir(), TEST_DATA_DIR,
|
44 |
-
pdb_file)
|
45 |
-
with open(pdb_file) as f:
|
46 |
-
pdb_string = f.read()
|
47 |
-
prot = protein.from_pdb_string(pdb_string, chain_id)
|
48 |
-
self._check_shapes(prot, num_res)
|
49 |
-
self.assertGreaterEqual(prot.aatype.min(), 0)
|
50 |
-
# Allow equal since unknown restypes have index equal to restype_num.
|
51 |
-
self.assertLessEqual(prot.aatype.max(), residue_constants.restype_num)
|
52 |
-
|
53 |
-
def test_to_pdb(self):
|
54 |
-
with open(
|
55 |
-
os.path.join(absltest.get_default_test_srcdir(), TEST_DATA_DIR,
|
56 |
-
'2rbg.pdb')) as f:
|
57 |
-
pdb_string = f.read()
|
58 |
-
prot = protein.from_pdb_string(pdb_string, chain_id='A')
|
59 |
-
pdb_string_reconstr = protein.to_pdb(prot)
|
60 |
-
prot_reconstr = protein.from_pdb_string(pdb_string_reconstr)
|
61 |
-
|
62 |
-
np.testing.assert_array_equal(prot_reconstr.aatype, prot.aatype)
|
63 |
-
np.testing.assert_array_almost_equal(
|
64 |
-
prot_reconstr.atom_positions, prot.atom_positions)
|
65 |
-
np.testing.assert_array_almost_equal(
|
66 |
-
prot_reconstr.atom_mask, prot.atom_mask)
|
67 |
-
np.testing.assert_array_equal(
|
68 |
-
prot_reconstr.residue_index, prot.residue_index)
|
69 |
-
np.testing.assert_array_almost_equal(
|
70 |
-
prot_reconstr.b_factors, prot.b_factors)
|
71 |
-
|
72 |
-
def test_ideal_atom_mask(self):
|
73 |
-
with open(
|
74 |
-
os.path.join(absltest.get_default_test_srcdir(), TEST_DATA_DIR,
|
75 |
-
'2rbg.pdb')) as f:
|
76 |
-
pdb_string = f.read()
|
77 |
-
prot = protein.from_pdb_string(pdb_string, chain_id='A')
|
78 |
-
ideal_mask = protein.ideal_atom_mask(prot)
|
79 |
-
non_ideal_residues = set([102] + list(range(127, 285)))
|
80 |
-
for i, (res, atom_mask) in enumerate(
|
81 |
-
zip(prot.residue_index, prot.atom_mask)):
|
82 |
-
if res in non_ideal_residues:
|
83 |
-
self.assertFalse(np.all(atom_mask == ideal_mask[i]), msg=f'{res}')
|
84 |
-
else:
|
85 |
-
self.assertTrue(np.all(atom_mask == ideal_mask[i]), msg=f'{res}')
|
86 |
-
|
87 |
-
|
88 |
-
if __name__ == '__main__':
|
89 |
-
absltest.main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/common/residue_constants.py
DELETED
@@ -1,895 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Constants used in AlphaFold."""
|
16 |
-
|
17 |
-
import collections
|
18 |
-
import functools
|
19 |
-
from typing import List, Mapping, Tuple
|
20 |
-
|
21 |
-
import numpy as np
|
22 |
-
import tree
|
23 |
-
|
24 |
-
# Internal import (35fd).
|
25 |
-
|
26 |
-
|
27 |
-
# Distance from one CA to next CA [trans configuration: omega = 180].
|
28 |
-
ca_ca = 3.80209737096
|
29 |
-
|
30 |
-
# Format: The list for each AA type contains chi1, chi2, chi3, chi4 in
|
31 |
-
# this order (or a relevant subset from chi1 onwards). ALA and GLY don't have
|
32 |
-
# chi angles so their chi angle lists are empty.
|
33 |
-
chi_angles_atoms = {
|
34 |
-
'ALA': [],
|
35 |
-
# Chi5 in arginine is always 0 +- 5 degrees, so ignore it.
|
36 |
-
'ARG': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD'],
|
37 |
-
['CB', 'CG', 'CD', 'NE'], ['CG', 'CD', 'NE', 'CZ']],
|
38 |
-
'ASN': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'OD1']],
|
39 |
-
'ASP': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'OD1']],
|
40 |
-
'CYS': [['N', 'CA', 'CB', 'SG']],
|
41 |
-
'GLN': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD'],
|
42 |
-
['CB', 'CG', 'CD', 'OE1']],
|
43 |
-
'GLU': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD'],
|
44 |
-
['CB', 'CG', 'CD', 'OE1']],
|
45 |
-
'GLY': [],
|
46 |
-
'HIS': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'ND1']],
|
47 |
-
'ILE': [['N', 'CA', 'CB', 'CG1'], ['CA', 'CB', 'CG1', 'CD1']],
|
48 |
-
'LEU': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD1']],
|
49 |
-
'LYS': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD'],
|
50 |
-
['CB', 'CG', 'CD', 'CE'], ['CG', 'CD', 'CE', 'NZ']],
|
51 |
-
'MET': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'SD'],
|
52 |
-
['CB', 'CG', 'SD', 'CE']],
|
53 |
-
'PHE': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD1']],
|
54 |
-
'PRO': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD']],
|
55 |
-
'SER': [['N', 'CA', 'CB', 'OG']],
|
56 |
-
'THR': [['N', 'CA', 'CB', 'OG1']],
|
57 |
-
'TRP': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD1']],
|
58 |
-
'TYR': [['N', 'CA', 'CB', 'CG'], ['CA', 'CB', 'CG', 'CD1']],
|
59 |
-
'VAL': [['N', 'CA', 'CB', 'CG1']],
|
60 |
-
}
|
61 |
-
|
62 |
-
# If chi angles given in fixed-length array, this matrix determines how to mask
|
63 |
-
# them for each AA type. The order is as per restype_order (see below).
|
64 |
-
chi_angles_mask = [
|
65 |
-
[0.0, 0.0, 0.0, 0.0], # ALA
|
66 |
-
[1.0, 1.0, 1.0, 1.0], # ARG
|
67 |
-
[1.0, 1.0, 0.0, 0.0], # ASN
|
68 |
-
[1.0, 1.0, 0.0, 0.0], # ASP
|
69 |
-
[1.0, 0.0, 0.0, 0.0], # CYS
|
70 |
-
[1.0, 1.0, 1.0, 0.0], # GLN
|
71 |
-
[1.0, 1.0, 1.0, 0.0], # GLU
|
72 |
-
[0.0, 0.0, 0.0, 0.0], # GLY
|
73 |
-
[1.0, 1.0, 0.0, 0.0], # HIS
|
74 |
-
[1.0, 1.0, 0.0, 0.0], # ILE
|
75 |
-
[1.0, 1.0, 0.0, 0.0], # LEU
|
76 |
-
[1.0, 1.0, 1.0, 1.0], # LYS
|
77 |
-
[1.0, 1.0, 1.0, 0.0], # MET
|
78 |
-
[1.0, 1.0, 0.0, 0.0], # PHE
|
79 |
-
[1.0, 1.0, 0.0, 0.0], # PRO
|
80 |
-
[1.0, 0.0, 0.0, 0.0], # SER
|
81 |
-
[1.0, 0.0, 0.0, 0.0], # THR
|
82 |
-
[1.0, 1.0, 0.0, 0.0], # TRP
|
83 |
-
[1.0, 1.0, 0.0, 0.0], # TYR
|
84 |
-
[1.0, 0.0, 0.0, 0.0], # VAL
|
85 |
-
]
|
86 |
-
|
87 |
-
# The following chi angles are pi periodic: they can be rotated by a multiple
|
88 |
-
# of pi without affecting the structure.
|
89 |
-
chi_pi_periodic = [
|
90 |
-
[0.0, 0.0, 0.0, 0.0], # ALA
|
91 |
-
[0.0, 0.0, 0.0, 0.0], # ARG
|
92 |
-
[0.0, 0.0, 0.0, 0.0], # ASN
|
93 |
-
[0.0, 1.0, 0.0, 0.0], # ASP
|
94 |
-
[0.0, 0.0, 0.0, 0.0], # CYS
|
95 |
-
[0.0, 0.0, 0.0, 0.0], # GLN
|
96 |
-
[0.0, 0.0, 1.0, 0.0], # GLU
|
97 |
-
[0.0, 0.0, 0.0, 0.0], # GLY
|
98 |
-
[0.0, 0.0, 0.0, 0.0], # HIS
|
99 |
-
[0.0, 0.0, 0.0, 0.0], # ILE
|
100 |
-
[0.0, 0.0, 0.0, 0.0], # LEU
|
101 |
-
[0.0, 0.0, 0.0, 0.0], # LYS
|
102 |
-
[0.0, 0.0, 0.0, 0.0], # MET
|
103 |
-
[0.0, 1.0, 0.0, 0.0], # PHE
|
104 |
-
[0.0, 0.0, 0.0, 0.0], # PRO
|
105 |
-
[0.0, 0.0, 0.0, 0.0], # SER
|
106 |
-
[0.0, 0.0, 0.0, 0.0], # THR
|
107 |
-
[0.0, 0.0, 0.0, 0.0], # TRP
|
108 |
-
[0.0, 1.0, 0.0, 0.0], # TYR
|
109 |
-
[0.0, 0.0, 0.0, 0.0], # VAL
|
110 |
-
[0.0, 0.0, 0.0, 0.0], # UNK
|
111 |
-
]
|
112 |
-
|
113 |
-
# Atoms positions relative to the 8 rigid groups, defined by the pre-omega, phi,
|
114 |
-
# psi and chi angles:
|
115 |
-
# 0: 'backbone group',
|
116 |
-
# 1: 'pre-omega-group', (empty)
|
117 |
-
# 2: 'phi-group', (currently empty, because it defines only hydrogens)
|
118 |
-
# 3: 'psi-group',
|
119 |
-
# 4,5,6,7: 'chi1,2,3,4-group'
|
120 |
-
# The atom positions are relative to the axis-end-atom of the corresponding
|
121 |
-
# rotation axis. The x-axis is in direction of the rotation axis, and the y-axis
|
122 |
-
# is defined such that the dihedral-angle-definiting atom (the last entry in
|
123 |
-
# chi_angles_atoms above) is in the xy-plane (with a positive y-coordinate).
|
124 |
-
# format: [atomname, group_idx, rel_position]
|
125 |
-
rigid_group_atom_positions = {
|
126 |
-
'ALA': [
|
127 |
-
['N', 0, (-0.525, 1.363, 0.000)],
|
128 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
129 |
-
['C', 0, (1.526, -0.000, -0.000)],
|
130 |
-
['CB', 0, (-0.529, -0.774, -1.205)],
|
131 |
-
['O', 3, (0.627, 1.062, 0.000)],
|
132 |
-
],
|
133 |
-
'ARG': [
|
134 |
-
['N', 0, (-0.524, 1.362, -0.000)],
|
135 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
136 |
-
['C', 0, (1.525, -0.000, -0.000)],
|
137 |
-
['CB', 0, (-0.524, -0.778, -1.209)],
|
138 |
-
['O', 3, (0.626, 1.062, 0.000)],
|
139 |
-
['CG', 4, (0.616, 1.390, -0.000)],
|
140 |
-
['CD', 5, (0.564, 1.414, 0.000)],
|
141 |
-
['NE', 6, (0.539, 1.357, -0.000)],
|
142 |
-
['NH1', 7, (0.206, 2.301, 0.000)],
|
143 |
-
['NH2', 7, (2.078, 0.978, -0.000)],
|
144 |
-
['CZ', 7, (0.758, 1.093, -0.000)],
|
145 |
-
],
|
146 |
-
'ASN': [
|
147 |
-
['N', 0, (-0.536, 1.357, 0.000)],
|
148 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
149 |
-
['C', 0, (1.526, -0.000, -0.000)],
|
150 |
-
['CB', 0, (-0.531, -0.787, -1.200)],
|
151 |
-
['O', 3, (0.625, 1.062, 0.000)],
|
152 |
-
['CG', 4, (0.584, 1.399, 0.000)],
|
153 |
-
['ND2', 5, (0.593, -1.188, 0.001)],
|
154 |
-
['OD1', 5, (0.633, 1.059, 0.000)],
|
155 |
-
],
|
156 |
-
'ASP': [
|
157 |
-
['N', 0, (-0.525, 1.362, -0.000)],
|
158 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
159 |
-
['C', 0, (1.527, 0.000, -0.000)],
|
160 |
-
['CB', 0, (-0.526, -0.778, -1.208)],
|
161 |
-
['O', 3, (0.626, 1.062, -0.000)],
|
162 |
-
['CG', 4, (0.593, 1.398, -0.000)],
|
163 |
-
['OD1', 5, (0.610, 1.091, 0.000)],
|
164 |
-
['OD2', 5, (0.592, -1.101, -0.003)],
|
165 |
-
],
|
166 |
-
'CYS': [
|
167 |
-
['N', 0, (-0.522, 1.362, -0.000)],
|
168 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
169 |
-
['C', 0, (1.524, 0.000, 0.000)],
|
170 |
-
['CB', 0, (-0.519, -0.773, -1.212)],
|
171 |
-
['O', 3, (0.625, 1.062, -0.000)],
|
172 |
-
['SG', 4, (0.728, 1.653, 0.000)],
|
173 |
-
],
|
174 |
-
'GLN': [
|
175 |
-
['N', 0, (-0.526, 1.361, -0.000)],
|
176 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
177 |
-
['C', 0, (1.526, 0.000, 0.000)],
|
178 |
-
['CB', 0, (-0.525, -0.779, -1.207)],
|
179 |
-
['O', 3, (0.626, 1.062, -0.000)],
|
180 |
-
['CG', 4, (0.615, 1.393, 0.000)],
|
181 |
-
['CD', 5, (0.587, 1.399, -0.000)],
|
182 |
-
['NE2', 6, (0.593, -1.189, -0.001)],
|
183 |
-
['OE1', 6, (0.634, 1.060, 0.000)],
|
184 |
-
],
|
185 |
-
'GLU': [
|
186 |
-
['N', 0, (-0.528, 1.361, 0.000)],
|
187 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
188 |
-
['C', 0, (1.526, -0.000, -0.000)],
|
189 |
-
['CB', 0, (-0.526, -0.781, -1.207)],
|
190 |
-
['O', 3, (0.626, 1.062, 0.000)],
|
191 |
-
['CG', 4, (0.615, 1.392, 0.000)],
|
192 |
-
['CD', 5, (0.600, 1.397, 0.000)],
|
193 |
-
['OE1', 6, (0.607, 1.095, -0.000)],
|
194 |
-
['OE2', 6, (0.589, -1.104, -0.001)],
|
195 |
-
],
|
196 |
-
'GLY': [
|
197 |
-
['N', 0, (-0.572, 1.337, 0.000)],
|
198 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
199 |
-
['C', 0, (1.517, -0.000, -0.000)],
|
200 |
-
['O', 3, (0.626, 1.062, -0.000)],
|
201 |
-
],
|
202 |
-
'HIS': [
|
203 |
-
['N', 0, (-0.527, 1.360, 0.000)],
|
204 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
205 |
-
['C', 0, (1.525, 0.000, 0.000)],
|
206 |
-
['CB', 0, (-0.525, -0.778, -1.208)],
|
207 |
-
['O', 3, (0.625, 1.063, 0.000)],
|
208 |
-
['CG', 4, (0.600, 1.370, -0.000)],
|
209 |
-
['CD2', 5, (0.889, -1.021, 0.003)],
|
210 |
-
['ND1', 5, (0.744, 1.160, -0.000)],
|
211 |
-
['CE1', 5, (2.030, 0.851, 0.002)],
|
212 |
-
['NE2', 5, (2.145, -0.466, 0.004)],
|
213 |
-
],
|
214 |
-
'ILE': [
|
215 |
-
['N', 0, (-0.493, 1.373, -0.000)],
|
216 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
217 |
-
['C', 0, (1.527, -0.000, -0.000)],
|
218 |
-
['CB', 0, (-0.536, -0.793, -1.213)],
|
219 |
-
['O', 3, (0.627, 1.062, -0.000)],
|
220 |
-
['CG1', 4, (0.534, 1.437, -0.000)],
|
221 |
-
['CG2', 4, (0.540, -0.785, -1.199)],
|
222 |
-
['CD1', 5, (0.619, 1.391, 0.000)],
|
223 |
-
],
|
224 |
-
'LEU': [
|
225 |
-
['N', 0, (-0.520, 1.363, 0.000)],
|
226 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
227 |
-
['C', 0, (1.525, -0.000, -0.000)],
|
228 |
-
['CB', 0, (-0.522, -0.773, -1.214)],
|
229 |
-
['O', 3, (0.625, 1.063, -0.000)],
|
230 |
-
['CG', 4, (0.678, 1.371, 0.000)],
|
231 |
-
['CD1', 5, (0.530, 1.430, -0.000)],
|
232 |
-
['CD2', 5, (0.535, -0.774, 1.200)],
|
233 |
-
],
|
234 |
-
'LYS': [
|
235 |
-
['N', 0, (-0.526, 1.362, -0.000)],
|
236 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
237 |
-
['C', 0, (1.526, 0.000, 0.000)],
|
238 |
-
['CB', 0, (-0.524, -0.778, -1.208)],
|
239 |
-
['O', 3, (0.626, 1.062, -0.000)],
|
240 |
-
['CG', 4, (0.619, 1.390, 0.000)],
|
241 |
-
['CD', 5, (0.559, 1.417, 0.000)],
|
242 |
-
['CE', 6, (0.560, 1.416, 0.000)],
|
243 |
-
['NZ', 7, (0.554, 1.387, 0.000)],
|
244 |
-
],
|
245 |
-
'MET': [
|
246 |
-
['N', 0, (-0.521, 1.364, -0.000)],
|
247 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
248 |
-
['C', 0, (1.525, 0.000, 0.000)],
|
249 |
-
['CB', 0, (-0.523, -0.776, -1.210)],
|
250 |
-
['O', 3, (0.625, 1.062, -0.000)],
|
251 |
-
['CG', 4, (0.613, 1.391, -0.000)],
|
252 |
-
['SD', 5, (0.703, 1.695, 0.000)],
|
253 |
-
['CE', 6, (0.320, 1.786, -0.000)],
|
254 |
-
],
|
255 |
-
'PHE': [
|
256 |
-
['N', 0, (-0.518, 1.363, 0.000)],
|
257 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
258 |
-
['C', 0, (1.524, 0.000, -0.000)],
|
259 |
-
['CB', 0, (-0.525, -0.776, -1.212)],
|
260 |
-
['O', 3, (0.626, 1.062, -0.000)],
|
261 |
-
['CG', 4, (0.607, 1.377, 0.000)],
|
262 |
-
['CD1', 5, (0.709, 1.195, -0.000)],
|
263 |
-
['CD2', 5, (0.706, -1.196, 0.000)],
|
264 |
-
['CE1', 5, (2.102, 1.198, -0.000)],
|
265 |
-
['CE2', 5, (2.098, -1.201, -0.000)],
|
266 |
-
['CZ', 5, (2.794, -0.003, -0.001)],
|
267 |
-
],
|
268 |
-
'PRO': [
|
269 |
-
['N', 0, (-0.566, 1.351, -0.000)],
|
270 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
271 |
-
['C', 0, (1.527, -0.000, 0.000)],
|
272 |
-
['CB', 0, (-0.546, -0.611, -1.293)],
|
273 |
-
['O', 3, (0.621, 1.066, 0.000)],
|
274 |
-
['CG', 4, (0.382, 1.445, 0.0)],
|
275 |
-
# ['CD', 5, (0.427, 1.440, 0.0)],
|
276 |
-
['CD', 5, (0.477, 1.424, 0.0)], # manually made angle 2 degrees larger
|
277 |
-
],
|
278 |
-
'SER': [
|
279 |
-
['N', 0, (-0.529, 1.360, -0.000)],
|
280 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
281 |
-
['C', 0, (1.525, -0.000, -0.000)],
|
282 |
-
['CB', 0, (-0.518, -0.777, -1.211)],
|
283 |
-
['O', 3, (0.626, 1.062, -0.000)],
|
284 |
-
['OG', 4, (0.503, 1.325, 0.000)],
|
285 |
-
],
|
286 |
-
'THR': [
|
287 |
-
['N', 0, (-0.517, 1.364, 0.000)],
|
288 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
289 |
-
['C', 0, (1.526, 0.000, -0.000)],
|
290 |
-
['CB', 0, (-0.516, -0.793, -1.215)],
|
291 |
-
['O', 3, (0.626, 1.062, 0.000)],
|
292 |
-
['CG2', 4, (0.550, -0.718, -1.228)],
|
293 |
-
['OG1', 4, (0.472, 1.353, 0.000)],
|
294 |
-
],
|
295 |
-
'TRP': [
|
296 |
-
['N', 0, (-0.521, 1.363, 0.000)],
|
297 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
298 |
-
['C', 0, (1.525, -0.000, 0.000)],
|
299 |
-
['CB', 0, (-0.523, -0.776, -1.212)],
|
300 |
-
['O', 3, (0.627, 1.062, 0.000)],
|
301 |
-
['CG', 4, (0.609, 1.370, -0.000)],
|
302 |
-
['CD1', 5, (0.824, 1.091, 0.000)],
|
303 |
-
['CD2', 5, (0.854, -1.148, -0.005)],
|
304 |
-
['CE2', 5, (2.186, -0.678, -0.007)],
|
305 |
-
['CE3', 5, (0.622, -2.530, -0.007)],
|
306 |
-
['NE1', 5, (2.140, 0.690, -0.004)],
|
307 |
-
['CH2', 5, (3.028, -2.890, -0.013)],
|
308 |
-
['CZ2', 5, (3.283, -1.543, -0.011)],
|
309 |
-
['CZ3', 5, (1.715, -3.389, -0.011)],
|
310 |
-
],
|
311 |
-
'TYR': [
|
312 |
-
['N', 0, (-0.522, 1.362, 0.000)],
|
313 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
314 |
-
['C', 0, (1.524, -0.000, -0.000)],
|
315 |
-
['CB', 0, (-0.522, -0.776, -1.213)],
|
316 |
-
['O', 3, (0.627, 1.062, -0.000)],
|
317 |
-
['CG', 4, (0.607, 1.382, -0.000)],
|
318 |
-
['CD1', 5, (0.716, 1.195, -0.000)],
|
319 |
-
['CD2', 5, (0.713, -1.194, -0.001)],
|
320 |
-
['CE1', 5, (2.107, 1.200, -0.002)],
|
321 |
-
['CE2', 5, (2.104, -1.201, -0.003)],
|
322 |
-
['OH', 5, (4.168, -0.002, -0.005)],
|
323 |
-
['CZ', 5, (2.791, -0.001, -0.003)],
|
324 |
-
],
|
325 |
-
'VAL': [
|
326 |
-
['N', 0, (-0.494, 1.373, -0.000)],
|
327 |
-
['CA', 0, (0.000, 0.000, 0.000)],
|
328 |
-
['C', 0, (1.527, -0.000, -0.000)],
|
329 |
-
['CB', 0, (-0.533, -0.795, -1.213)],
|
330 |
-
['O', 3, (0.627, 1.062, -0.000)],
|
331 |
-
['CG1', 4, (0.540, 1.429, -0.000)],
|
332 |
-
['CG2', 4, (0.533, -0.776, 1.203)],
|
333 |
-
],
|
334 |
-
}
|
335 |
-
|
336 |
-
# A list of atoms (excluding hydrogen) for each AA type. PDB naming convention.
|
337 |
-
residue_atoms = {
|
338 |
-
'ALA': ['C', 'CA', 'CB', 'N', 'O'],
|
339 |
-
'ARG': ['C', 'CA', 'CB', 'CG', 'CD', 'CZ', 'N', 'NE', 'O', 'NH1', 'NH2'],
|
340 |
-
'ASP': ['C', 'CA', 'CB', 'CG', 'N', 'O', 'OD1', 'OD2'],
|
341 |
-
'ASN': ['C', 'CA', 'CB', 'CG', 'N', 'ND2', 'O', 'OD1'],
|
342 |
-
'CYS': ['C', 'CA', 'CB', 'N', 'O', 'SG'],
|
343 |
-
'GLU': ['C', 'CA', 'CB', 'CG', 'CD', 'N', 'O', 'OE1', 'OE2'],
|
344 |
-
'GLN': ['C', 'CA', 'CB', 'CG', 'CD', 'N', 'NE2', 'O', 'OE1'],
|
345 |
-
'GLY': ['C', 'CA', 'N', 'O'],
|
346 |
-
'HIS': ['C', 'CA', 'CB', 'CG', 'CD2', 'CE1', 'N', 'ND1', 'NE2', 'O'],
|
347 |
-
'ILE': ['C', 'CA', 'CB', 'CG1', 'CG2', 'CD1', 'N', 'O'],
|
348 |
-
'LEU': ['C', 'CA', 'CB', 'CG', 'CD1', 'CD2', 'N', 'O'],
|
349 |
-
'LYS': ['C', 'CA', 'CB', 'CG', 'CD', 'CE', 'N', 'NZ', 'O'],
|
350 |
-
'MET': ['C', 'CA', 'CB', 'CG', 'CE', 'N', 'O', 'SD'],
|
351 |
-
'PHE': ['C', 'CA', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', 'N', 'O'],
|
352 |
-
'PRO': ['C', 'CA', 'CB', 'CG', 'CD', 'N', 'O'],
|
353 |
-
'SER': ['C', 'CA', 'CB', 'N', 'O', 'OG'],
|
354 |
-
'THR': ['C', 'CA', 'CB', 'CG2', 'N', 'O', 'OG1'],
|
355 |
-
'TRP': ['C', 'CA', 'CB', 'CG', 'CD1', 'CD2', 'CE2', 'CE3', 'CZ2', 'CZ3',
|
356 |
-
'CH2', 'N', 'NE1', 'O'],
|
357 |
-
'TYR': ['C', 'CA', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', 'N', 'O',
|
358 |
-
'OH'],
|
359 |
-
'VAL': ['C', 'CA', 'CB', 'CG1', 'CG2', 'N', 'O']
|
360 |
-
}
|
361 |
-
|
362 |
-
# Naming swaps for ambiguous atom names.
|
363 |
-
# Due to symmetries in the amino acids the naming of atoms is ambiguous in
|
364 |
-
# 4 of the 20 amino acids.
|
365 |
-
# (The LDDT paper lists 7 amino acids as ambiguous, but the naming ambiguities
|
366 |
-
# in LEU, VAL and ARG can be resolved by using the 3d constellations of
|
367 |
-
# the 'ambiguous' atoms and their neighbours)
|
368 |
-
residue_atom_renaming_swaps = {
|
369 |
-
'ASP': {'OD1': 'OD2'},
|
370 |
-
'GLU': {'OE1': 'OE2'},
|
371 |
-
'PHE': {'CD1': 'CD2', 'CE1': 'CE2'},
|
372 |
-
'TYR': {'CD1': 'CD2', 'CE1': 'CE2'},
|
373 |
-
}
|
374 |
-
|
375 |
-
# Van der Waals radii [Angstroem] of the atoms (from Wikipedia)
|
376 |
-
van_der_waals_radius = {
|
377 |
-
'C': 1.7,
|
378 |
-
'N': 1.55,
|
379 |
-
'O': 1.52,
|
380 |
-
'S': 1.8,
|
381 |
-
}
|
382 |
-
|
383 |
-
Bond = collections.namedtuple(
|
384 |
-
'Bond', ['atom1_name', 'atom2_name', 'length', 'stddev'])
|
385 |
-
BondAngle = collections.namedtuple(
|
386 |
-
'BondAngle',
|
387 |
-
['atom1_name', 'atom2_name', 'atom3name', 'angle_rad', 'stddev'])
|
388 |
-
|
389 |
-
|
390 |
-
@functools.lru_cache(maxsize=None)
|
391 |
-
def load_stereo_chemical_props() -> Tuple[Mapping[str, List[Bond]],
|
392 |
-
Mapping[str, List[Bond]],
|
393 |
-
Mapping[str, List[BondAngle]]]:
|
394 |
-
"""Load stereo_chemical_props.txt into a nice structure.
|
395 |
-
|
396 |
-
Load literature values for bond lengths and bond angles and translate
|
397 |
-
bond angles into the length of the opposite edge of the triangle
|
398 |
-
("residue_virtual_bonds").
|
399 |
-
|
400 |
-
Returns:
|
401 |
-
residue_bonds: dict that maps resname --> list of Bond tuples
|
402 |
-
residue_virtual_bonds: dict that maps resname --> list of Bond tuples
|
403 |
-
residue_bond_angles: dict that maps resname --> list of BondAngle tuples
|
404 |
-
"""
|
405 |
-
stereo_chemical_props_path = (
|
406 |
-
'alphafold/common/stereo_chemical_props.txt')
|
407 |
-
with open(stereo_chemical_props_path, 'rt') as f:
|
408 |
-
stereo_chemical_props = f.read()
|
409 |
-
lines_iter = iter(stereo_chemical_props.splitlines())
|
410 |
-
# Load bond lengths.
|
411 |
-
residue_bonds = {}
|
412 |
-
next(lines_iter) # Skip header line.
|
413 |
-
for line in lines_iter:
|
414 |
-
if line.strip() == '-':
|
415 |
-
break
|
416 |
-
bond, resname, length, stddev = line.split()
|
417 |
-
atom1, atom2 = bond.split('-')
|
418 |
-
if resname not in residue_bonds:
|
419 |
-
residue_bonds[resname] = []
|
420 |
-
residue_bonds[resname].append(
|
421 |
-
Bond(atom1, atom2, float(length), float(stddev)))
|
422 |
-
residue_bonds['UNK'] = []
|
423 |
-
|
424 |
-
# Load bond angles.
|
425 |
-
residue_bond_angles = {}
|
426 |
-
next(lines_iter) # Skip empty line.
|
427 |
-
next(lines_iter) # Skip header line.
|
428 |
-
for line in lines_iter:
|
429 |
-
if line.strip() == '-':
|
430 |
-
break
|
431 |
-
bond, resname, angle_degree, stddev_degree = line.split()
|
432 |
-
atom1, atom2, atom3 = bond.split('-')
|
433 |
-
if resname not in residue_bond_angles:
|
434 |
-
residue_bond_angles[resname] = []
|
435 |
-
residue_bond_angles[resname].append(
|
436 |
-
BondAngle(atom1, atom2, atom3,
|
437 |
-
float(angle_degree) / 180. * np.pi,
|
438 |
-
float(stddev_degree) / 180. * np.pi))
|
439 |
-
residue_bond_angles['UNK'] = []
|
440 |
-
|
441 |
-
def make_bond_key(atom1_name, atom2_name):
|
442 |
-
"""Unique key to lookup bonds."""
|
443 |
-
return '-'.join(sorted([atom1_name, atom2_name]))
|
444 |
-
|
445 |
-
# Translate bond angles into distances ("virtual bonds").
|
446 |
-
residue_virtual_bonds = {}
|
447 |
-
for resname, bond_angles in residue_bond_angles.items():
|
448 |
-
# Create a fast lookup dict for bond lengths.
|
449 |
-
bond_cache = {}
|
450 |
-
for b in residue_bonds[resname]:
|
451 |
-
bond_cache[make_bond_key(b.atom1_name, b.atom2_name)] = b
|
452 |
-
residue_virtual_bonds[resname] = []
|
453 |
-
for ba in bond_angles:
|
454 |
-
bond1 = bond_cache[make_bond_key(ba.atom1_name, ba.atom2_name)]
|
455 |
-
bond2 = bond_cache[make_bond_key(ba.atom2_name, ba.atom3name)]
|
456 |
-
|
457 |
-
# Compute distance between atom1 and atom3 using the law of cosines
|
458 |
-
# c^2 = a^2 + b^2 - 2ab*cos(gamma).
|
459 |
-
gamma = ba.angle_rad
|
460 |
-
length = np.sqrt(bond1.length**2 + bond2.length**2
|
461 |
-
- 2 * bond1.length * bond2.length * np.cos(gamma))
|
462 |
-
|
463 |
-
# Propagation of uncertainty assuming uncorrelated errors.
|
464 |
-
dl_outer = 0.5 / length
|
465 |
-
dl_dgamma = (2 * bond1.length * bond2.length * np.sin(gamma)) * dl_outer
|
466 |
-
dl_db1 = (2 * bond1.length - 2 * bond2.length * np.cos(gamma)) * dl_outer
|
467 |
-
dl_db2 = (2 * bond2.length - 2 * bond1.length * np.cos(gamma)) * dl_outer
|
468 |
-
stddev = np.sqrt((dl_dgamma * ba.stddev)**2 +
|
469 |
-
(dl_db1 * bond1.stddev)**2 +
|
470 |
-
(dl_db2 * bond2.stddev)**2)
|
471 |
-
residue_virtual_bonds[resname].append(
|
472 |
-
Bond(ba.atom1_name, ba.atom3name, length, stddev))
|
473 |
-
|
474 |
-
return (residue_bonds,
|
475 |
-
residue_virtual_bonds,
|
476 |
-
residue_bond_angles)
|
477 |
-
|
478 |
-
|
479 |
-
# Between-residue bond lengths for general bonds (first element) and for Proline
|
480 |
-
# (second element).
|
481 |
-
between_res_bond_length_c_n = [1.329, 1.341]
|
482 |
-
between_res_bond_length_stddev_c_n = [0.014, 0.016]
|
483 |
-
|
484 |
-
# Between-residue cos_angles.
|
485 |
-
between_res_cos_angles_c_n_ca = [-0.5203, 0.0353] # degrees: 121.352 +- 2.315
|
486 |
-
between_res_cos_angles_ca_c_n = [-0.4473, 0.0311] # degrees: 116.568 +- 1.995
|
487 |
-
|
488 |
-
# This mapping is used when we need to store atom data in a format that requires
|
489 |
-
# fixed atom data size for every residue (e.g. a numpy array).
|
490 |
-
atom_types = [
|
491 |
-
'N', 'CA', 'C', 'CB', 'O', 'CG', 'CG1', 'CG2', 'OG', 'OG1', 'SG', 'CD',
|
492 |
-
'CD1', 'CD2', 'ND1', 'ND2', 'OD1', 'OD2', 'SD', 'CE', 'CE1', 'CE2', 'CE3',
|
493 |
-
'NE', 'NE1', 'NE2', 'OE1', 'OE2', 'CH2', 'NH1', 'NH2', 'OH', 'CZ', 'CZ2',
|
494 |
-
'CZ3', 'NZ', 'OXT'
|
495 |
-
]
|
496 |
-
atom_order = {atom_type: i for i, atom_type in enumerate(atom_types)}
|
497 |
-
atom_type_num = len(atom_types) # := 37.
|
498 |
-
|
499 |
-
# A compact atom encoding with 14 columns
|
500 |
-
# pylint: disable=line-too-long
|
501 |
-
# pylint: disable=bad-whitespace
|
502 |
-
restype_name_to_atom14_names = {
|
503 |
-
'ALA': ['N', 'CA', 'C', 'O', 'CB', '', '', '', '', '', '', '', '', ''],
|
504 |
-
'ARG': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'NE', 'CZ', 'NH1', 'NH2', '', '', ''],
|
505 |
-
'ASN': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'OD1', 'ND2', '', '', '', '', '', ''],
|
506 |
-
'ASP': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'OD1', 'OD2', '', '', '', '', '', ''],
|
507 |
-
'CYS': ['N', 'CA', 'C', 'O', 'CB', 'SG', '', '', '', '', '', '', '', ''],
|
508 |
-
'GLN': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'OE1', 'NE2', '', '', '', '', ''],
|
509 |
-
'GLU': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'OE1', 'OE2', '', '', '', '', ''],
|
510 |
-
'GLY': ['N', 'CA', 'C', 'O', '', '', '', '', '', '', '', '', '', ''],
|
511 |
-
'HIS': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'ND1', 'CD2', 'CE1', 'NE2', '', '', '', ''],
|
512 |
-
'ILE': ['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2', 'CD1', '', '', '', '', '', ''],
|
513 |
-
'LEU': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', '', '', '', '', '', ''],
|
514 |
-
'LYS': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'CE', 'NZ', '', '', '', '', ''],
|
515 |
-
'MET': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'SD', 'CE', '', '', '', '', '', ''],
|
516 |
-
'PHE': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', '', '', ''],
|
517 |
-
'PRO': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', '', '', '', '', '', '', ''],
|
518 |
-
'SER': ['N', 'CA', 'C', 'O', 'CB', 'OG', '', '', '', '', '', '', '', ''],
|
519 |
-
'THR': ['N', 'CA', 'C', 'O', 'CB', 'OG1', 'CG2', '', '', '', '', '', '', ''],
|
520 |
-
'TRP': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'NE1', 'CE2', 'CE3', 'CZ2', 'CZ3', 'CH2'],
|
521 |
-
'TYR': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', 'OH', '', ''],
|
522 |
-
'VAL': ['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2', '', '', '', '', '', '', ''],
|
523 |
-
'UNK': ['', '', '', '', '', '', '', '', '', '', '', '', '', ''],
|
524 |
-
|
525 |
-
}
|
526 |
-
# pylint: enable=line-too-long
|
527 |
-
# pylint: enable=bad-whitespace
|
528 |
-
|
529 |
-
|
530 |
-
# This is the standard residue order when coding AA type as a number.
|
531 |
-
# Reproduce it by taking 3-letter AA codes and sorting them alphabetically.
|
532 |
-
restypes = [
|
533 |
-
'A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P',
|
534 |
-
'S', 'T', 'W', 'Y', 'V'
|
535 |
-
]
|
536 |
-
restype_order = {restype: i for i, restype in enumerate(restypes)}
|
537 |
-
restype_num = len(restypes) # := 20.
|
538 |
-
unk_restype_index = restype_num # Catch-all index for unknown restypes.
|
539 |
-
|
540 |
-
restypes_with_x = restypes + ['X']
|
541 |
-
restype_order_with_x = {restype: i for i, restype in enumerate(restypes_with_x)}
|
542 |
-
|
543 |
-
|
544 |
-
def sequence_to_onehot(
|
545 |
-
sequence: str,
|
546 |
-
mapping: Mapping[str, int],
|
547 |
-
map_unknown_to_x: bool = False) -> np.ndarray:
|
548 |
-
"""Maps the given sequence into a one-hot encoded matrix.
|
549 |
-
|
550 |
-
Args:
|
551 |
-
sequence: An amino acid sequence.
|
552 |
-
mapping: A dictionary mapping amino acids to integers.
|
553 |
-
map_unknown_to_x: If True, any amino acid that is not in the mapping will be
|
554 |
-
mapped to the unknown amino acid 'X'. If the mapping doesn't contain
|
555 |
-
amino acid 'X', an error will be thrown. If False, any amino acid not in
|
556 |
-
the mapping will throw an error.
|
557 |
-
|
558 |
-
Returns:
|
559 |
-
A numpy array of shape (seq_len, num_unique_aas) with one-hot encoding of
|
560 |
-
the sequence.
|
561 |
-
|
562 |
-
Raises:
|
563 |
-
ValueError: If the mapping doesn't contain values from 0 to
|
564 |
-
num_unique_aas - 1 without any gaps.
|
565 |
-
"""
|
566 |
-
num_entries = max(mapping.values()) + 1
|
567 |
-
|
568 |
-
if sorted(set(mapping.values())) != list(range(num_entries)):
|
569 |
-
raise ValueError('The mapping must have values from 0 to num_unique_aas-1 '
|
570 |
-
'without any gaps. Got: %s' % sorted(mapping.values()))
|
571 |
-
|
572 |
-
one_hot_arr = np.zeros((len(sequence), num_entries), dtype=np.int32)
|
573 |
-
|
574 |
-
for aa_index, aa_type in enumerate(sequence):
|
575 |
-
if map_unknown_to_x:
|
576 |
-
if aa_type.isalpha() and aa_type.isupper():
|
577 |
-
aa_id = mapping.get(aa_type, mapping['X'])
|
578 |
-
else:
|
579 |
-
raise ValueError(f'Invalid character in the sequence: {aa_type}')
|
580 |
-
else:
|
581 |
-
aa_id = mapping[aa_type]
|
582 |
-
one_hot_arr[aa_index, aa_id] = 1
|
583 |
-
|
584 |
-
return one_hot_arr
|
585 |
-
|
586 |
-
|
587 |
-
restype_1to3 = {
|
588 |
-
'A': 'ALA',
|
589 |
-
'R': 'ARG',
|
590 |
-
'N': 'ASN',
|
591 |
-
'D': 'ASP',
|
592 |
-
'C': 'CYS',
|
593 |
-
'Q': 'GLN',
|
594 |
-
'E': 'GLU',
|
595 |
-
'G': 'GLY',
|
596 |
-
'H': 'HIS',
|
597 |
-
'I': 'ILE',
|
598 |
-
'L': 'LEU',
|
599 |
-
'K': 'LYS',
|
600 |
-
'M': 'MET',
|
601 |
-
'F': 'PHE',
|
602 |
-
'P': 'PRO',
|
603 |
-
'S': 'SER',
|
604 |
-
'T': 'THR',
|
605 |
-
'W': 'TRP',
|
606 |
-
'Y': 'TYR',
|
607 |
-
'V': 'VAL',
|
608 |
-
}
|
609 |
-
|
610 |
-
|
611 |
-
# NB: restype_3to1 differs from Bio.PDB.protein_letters_3to1 by being a simple
|
612 |
-
# 1-to-1 mapping of 3 letter names to one letter names. The latter contains
|
613 |
-
# many more, and less common, three letter names as keys and maps many of these
|
614 |
-
# to the same one letter name (including 'X' and 'U' which we don't use here).
|
615 |
-
restype_3to1 = {v: k for k, v in restype_1to3.items()}
|
616 |
-
|
617 |
-
# Define a restype name for all unknown residues.
|
618 |
-
unk_restype = 'UNK'
|
619 |
-
|
620 |
-
resnames = [restype_1to3[r] for r in restypes] + [unk_restype]
|
621 |
-
resname_to_idx = {resname: i for i, resname in enumerate(resnames)}
|
622 |
-
|
623 |
-
|
624 |
-
# The mapping here uses hhblits convention, so that B is mapped to D, J and O
|
625 |
-
# are mapped to X, U is mapped to C, and Z is mapped to E. Other than that the
|
626 |
-
# remaining 20 amino acids are kept in alphabetical order.
|
627 |
-
# There are 2 non-amino acid codes, X (representing any amino acid) and
|
628 |
-
# "-" representing a missing amino acid in an alignment. The id for these
|
629 |
-
# codes is put at the end (20 and 21) so that they can easily be ignored if
|
630 |
-
# desired.
|
631 |
-
HHBLITS_AA_TO_ID = {
|
632 |
-
'A': 0,
|
633 |
-
'B': 2,
|
634 |
-
'C': 1,
|
635 |
-
'D': 2,
|
636 |
-
'E': 3,
|
637 |
-
'F': 4,
|
638 |
-
'G': 5,
|
639 |
-
'H': 6,
|
640 |
-
'I': 7,
|
641 |
-
'J': 20,
|
642 |
-
'K': 8,
|
643 |
-
'L': 9,
|
644 |
-
'M': 10,
|
645 |
-
'N': 11,
|
646 |
-
'O': 20,
|
647 |
-
'P': 12,
|
648 |
-
'Q': 13,
|
649 |
-
'R': 14,
|
650 |
-
'S': 15,
|
651 |
-
'T': 16,
|
652 |
-
'U': 1,
|
653 |
-
'V': 17,
|
654 |
-
'W': 18,
|
655 |
-
'X': 20,
|
656 |
-
'Y': 19,
|
657 |
-
'Z': 3,
|
658 |
-
'-': 21,
|
659 |
-
}
|
660 |
-
|
661 |
-
# Partial inversion of HHBLITS_AA_TO_ID.
|
662 |
-
ID_TO_HHBLITS_AA = {
|
663 |
-
0: 'A',
|
664 |
-
1: 'C', # Also U.
|
665 |
-
2: 'D', # Also B.
|
666 |
-
3: 'E', # Also Z.
|
667 |
-
4: 'F',
|
668 |
-
5: 'G',
|
669 |
-
6: 'H',
|
670 |
-
7: 'I',
|
671 |
-
8: 'K',
|
672 |
-
9: 'L',
|
673 |
-
10: 'M',
|
674 |
-
11: 'N',
|
675 |
-
12: 'P',
|
676 |
-
13: 'Q',
|
677 |
-
14: 'R',
|
678 |
-
15: 'S',
|
679 |
-
16: 'T',
|
680 |
-
17: 'V',
|
681 |
-
18: 'W',
|
682 |
-
19: 'Y',
|
683 |
-
20: 'X', # Includes J and O.
|
684 |
-
21: '-',
|
685 |
-
}
|
686 |
-
|
687 |
-
restypes_with_x_and_gap = restypes + ['X', '-']
|
688 |
-
MAP_HHBLITS_AATYPE_TO_OUR_AATYPE = tuple(
|
689 |
-
restypes_with_x_and_gap.index(ID_TO_HHBLITS_AA[i])
|
690 |
-
for i in range(len(restypes_with_x_and_gap)))
|
691 |
-
|
692 |
-
|
693 |
-
def _make_standard_atom_mask() -> np.ndarray:
|
694 |
-
"""Returns [num_res_types, num_atom_types] mask array."""
|
695 |
-
# +1 to account for unknown (all 0s).
|
696 |
-
mask = np.zeros([restype_num + 1, atom_type_num], dtype=np.int32)
|
697 |
-
for restype, restype_letter in enumerate(restypes):
|
698 |
-
restype_name = restype_1to3[restype_letter]
|
699 |
-
atom_names = residue_atoms[restype_name]
|
700 |
-
for atom_name in atom_names:
|
701 |
-
atom_type = atom_order[atom_name]
|
702 |
-
mask[restype, atom_type] = 1
|
703 |
-
return mask
|
704 |
-
|
705 |
-
|
706 |
-
STANDARD_ATOM_MASK = _make_standard_atom_mask()
|
707 |
-
|
708 |
-
|
709 |
-
# A one hot representation for the first and second atoms defining the axis
|
710 |
-
# of rotation for each chi-angle in each residue.
|
711 |
-
def chi_angle_atom(atom_index: int) -> np.ndarray:
|
712 |
-
"""Define chi-angle rigid groups via one-hot representations."""
|
713 |
-
chi_angles_index = {}
|
714 |
-
one_hots = []
|
715 |
-
|
716 |
-
for k, v in chi_angles_atoms.items():
|
717 |
-
indices = [atom_types.index(s[atom_index]) for s in v]
|
718 |
-
indices.extend([-1]*(4-len(indices)))
|
719 |
-
chi_angles_index[k] = indices
|
720 |
-
|
721 |
-
for r in restypes:
|
722 |
-
res3 = restype_1to3[r]
|
723 |
-
one_hot = np.eye(atom_type_num)[chi_angles_index[res3]]
|
724 |
-
one_hots.append(one_hot)
|
725 |
-
|
726 |
-
one_hots.append(np.zeros([4, atom_type_num])) # Add zeros for residue `X`.
|
727 |
-
one_hot = np.stack(one_hots, axis=0)
|
728 |
-
one_hot = np.transpose(one_hot, [0, 2, 1])
|
729 |
-
|
730 |
-
return one_hot
|
731 |
-
|
732 |
-
chi_atom_1_one_hot = chi_angle_atom(1)
|
733 |
-
chi_atom_2_one_hot = chi_angle_atom(2)
|
734 |
-
|
735 |
-
# An array like chi_angles_atoms but using indices rather than names.
|
736 |
-
chi_angles_atom_indices = [chi_angles_atoms[restype_1to3[r]] for r in restypes]
|
737 |
-
chi_angles_atom_indices = tree.map_structure(
|
738 |
-
lambda atom_name: atom_order[atom_name], chi_angles_atom_indices)
|
739 |
-
chi_angles_atom_indices = np.array([
|
740 |
-
chi_atoms + ([[0, 0, 0, 0]] * (4 - len(chi_atoms)))
|
741 |
-
for chi_atoms in chi_angles_atom_indices])
|
742 |
-
|
743 |
-
# Mapping from (res_name, atom_name) pairs to the atom's chi group index
|
744 |
-
# and atom index within that group.
|
745 |
-
chi_groups_for_atom = collections.defaultdict(list)
|
746 |
-
for res_name, chi_angle_atoms_for_res in chi_angles_atoms.items():
|
747 |
-
for chi_group_i, chi_group in enumerate(chi_angle_atoms_for_res):
|
748 |
-
for atom_i, atom in enumerate(chi_group):
|
749 |
-
chi_groups_for_atom[(res_name, atom)].append((chi_group_i, atom_i))
|
750 |
-
chi_groups_for_atom = dict(chi_groups_for_atom)
|
751 |
-
|
752 |
-
|
753 |
-
def _make_rigid_transformation_4x4(ex, ey, translation):
|
754 |
-
"""Create a rigid 4x4 transformation matrix from two axes and transl."""
|
755 |
-
# Normalize ex.
|
756 |
-
ex_normalized = ex / np.linalg.norm(ex)
|
757 |
-
|
758 |
-
# make ey perpendicular to ex
|
759 |
-
ey_normalized = ey - np.dot(ey, ex_normalized) * ex_normalized
|
760 |
-
ey_normalized /= np.linalg.norm(ey_normalized)
|
761 |
-
|
762 |
-
# compute ez as cross product
|
763 |
-
eznorm = np.cross(ex_normalized, ey_normalized)
|
764 |
-
m = np.stack([ex_normalized, ey_normalized, eznorm, translation]).transpose()
|
765 |
-
m = np.concatenate([m, [[0., 0., 0., 1.]]], axis=0)
|
766 |
-
return m
|
767 |
-
|
768 |
-
|
769 |
-
# create an array with (restype, atomtype) --> rigid_group_idx
|
770 |
-
# and an array with (restype, atomtype, coord) for the atom positions
|
771 |
-
# and compute affine transformation matrices (4,4) from one rigid group to the
|
772 |
-
# previous group
|
773 |
-
restype_atom37_to_rigid_group = np.zeros([21, 37], dtype=np.int)
|
774 |
-
restype_atom37_mask = np.zeros([21, 37], dtype=np.float32)
|
775 |
-
restype_atom37_rigid_group_positions = np.zeros([21, 37, 3], dtype=np.float32)
|
776 |
-
restype_atom14_to_rigid_group = np.zeros([21, 14], dtype=np.int)
|
777 |
-
restype_atom14_mask = np.zeros([21, 14], dtype=np.float32)
|
778 |
-
restype_atom14_rigid_group_positions = np.zeros([21, 14, 3], dtype=np.float32)
|
779 |
-
restype_rigid_group_default_frame = np.zeros([21, 8, 4, 4], dtype=np.float32)
|
780 |
-
|
781 |
-
|
782 |
-
def _make_rigid_group_constants():
|
783 |
-
"""Fill the arrays above."""
|
784 |
-
for restype, restype_letter in enumerate(restypes):
|
785 |
-
resname = restype_1to3[restype_letter]
|
786 |
-
for atomname, group_idx, atom_position in rigid_group_atom_positions[
|
787 |
-
resname]:
|
788 |
-
atomtype = atom_order[atomname]
|
789 |
-
restype_atom37_to_rigid_group[restype, atomtype] = group_idx
|
790 |
-
restype_atom37_mask[restype, atomtype] = 1
|
791 |
-
restype_atom37_rigid_group_positions[restype, atomtype, :] = atom_position
|
792 |
-
|
793 |
-
atom14idx = restype_name_to_atom14_names[resname].index(atomname)
|
794 |
-
restype_atom14_to_rigid_group[restype, atom14idx] = group_idx
|
795 |
-
restype_atom14_mask[restype, atom14idx] = 1
|
796 |
-
restype_atom14_rigid_group_positions[restype,
|
797 |
-
atom14idx, :] = atom_position
|
798 |
-
|
799 |
-
for restype, restype_letter in enumerate(restypes):
|
800 |
-
resname = restype_1to3[restype_letter]
|
801 |
-
atom_positions = {name: np.array(pos) for name, _, pos
|
802 |
-
in rigid_group_atom_positions[resname]}
|
803 |
-
|
804 |
-
# backbone to backbone is the identity transform
|
805 |
-
restype_rigid_group_default_frame[restype, 0, :, :] = np.eye(4)
|
806 |
-
|
807 |
-
# pre-omega-frame to backbone (currently dummy identity matrix)
|
808 |
-
restype_rigid_group_default_frame[restype, 1, :, :] = np.eye(4)
|
809 |
-
|
810 |
-
# phi-frame to backbone
|
811 |
-
mat = _make_rigid_transformation_4x4(
|
812 |
-
ex=atom_positions['N'] - atom_positions['CA'],
|
813 |
-
ey=np.array([1., 0., 0.]),
|
814 |
-
translation=atom_positions['N'])
|
815 |
-
restype_rigid_group_default_frame[restype, 2, :, :] = mat
|
816 |
-
|
817 |
-
# psi-frame to backbone
|
818 |
-
mat = _make_rigid_transformation_4x4(
|
819 |
-
ex=atom_positions['C'] - atom_positions['CA'],
|
820 |
-
ey=atom_positions['CA'] - atom_positions['N'],
|
821 |
-
translation=atom_positions['C'])
|
822 |
-
restype_rigid_group_default_frame[restype, 3, :, :] = mat
|
823 |
-
|
824 |
-
# chi1-frame to backbone
|
825 |
-
if chi_angles_mask[restype][0]:
|
826 |
-
base_atom_names = chi_angles_atoms[resname][0]
|
827 |
-
base_atom_positions = [atom_positions[name] for name in base_atom_names]
|
828 |
-
mat = _make_rigid_transformation_4x4(
|
829 |
-
ex=base_atom_positions[2] - base_atom_positions[1],
|
830 |
-
ey=base_atom_positions[0] - base_atom_positions[1],
|
831 |
-
translation=base_atom_positions[2])
|
832 |
-
restype_rigid_group_default_frame[restype, 4, :, :] = mat
|
833 |
-
|
834 |
-
# chi2-frame to chi1-frame
|
835 |
-
# chi3-frame to chi2-frame
|
836 |
-
# chi4-frame to chi3-frame
|
837 |
-
# luckily all rotation axes for the next frame start at (0,0,0) of the
|
838 |
-
# previous frame
|
839 |
-
for chi_idx in range(1, 4):
|
840 |
-
if chi_angles_mask[restype][chi_idx]:
|
841 |
-
axis_end_atom_name = chi_angles_atoms[resname][chi_idx][2]
|
842 |
-
axis_end_atom_position = atom_positions[axis_end_atom_name]
|
843 |
-
mat = _make_rigid_transformation_4x4(
|
844 |
-
ex=axis_end_atom_position,
|
845 |
-
ey=np.array([-1., 0., 0.]),
|
846 |
-
translation=axis_end_atom_position)
|
847 |
-
restype_rigid_group_default_frame[restype, 4 + chi_idx, :, :] = mat
|
848 |
-
|
849 |
-
|
850 |
-
_make_rigid_group_constants()
|
851 |
-
|
852 |
-
|
853 |
-
def make_atom14_dists_bounds(overlap_tolerance=1.5,
|
854 |
-
bond_length_tolerance_factor=15):
|
855 |
-
"""compute upper and lower bounds for bonds to assess violations."""
|
856 |
-
restype_atom14_bond_lower_bound = np.zeros([21, 14, 14], np.float32)
|
857 |
-
restype_atom14_bond_upper_bound = np.zeros([21, 14, 14], np.float32)
|
858 |
-
restype_atom14_bond_stddev = np.zeros([21, 14, 14], np.float32)
|
859 |
-
residue_bonds, residue_virtual_bonds, _ = load_stereo_chemical_props()
|
860 |
-
for restype, restype_letter in enumerate(restypes):
|
861 |
-
resname = restype_1to3[restype_letter]
|
862 |
-
atom_list = restype_name_to_atom14_names[resname]
|
863 |
-
|
864 |
-
# create lower and upper bounds for clashes
|
865 |
-
for atom1_idx, atom1_name in enumerate(atom_list):
|
866 |
-
if not atom1_name:
|
867 |
-
continue
|
868 |
-
atom1_radius = van_der_waals_radius[atom1_name[0]]
|
869 |
-
for atom2_idx, atom2_name in enumerate(atom_list):
|
870 |
-
if (not atom2_name) or atom1_idx == atom2_idx:
|
871 |
-
continue
|
872 |
-
atom2_radius = van_der_waals_radius[atom2_name[0]]
|
873 |
-
lower = atom1_radius + atom2_radius - overlap_tolerance
|
874 |
-
upper = 1e10
|
875 |
-
restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower
|
876 |
-
restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower
|
877 |
-
restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper
|
878 |
-
restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper
|
879 |
-
|
880 |
-
# overwrite lower and upper bounds for bonds and angles
|
881 |
-
for b in residue_bonds[resname] + residue_virtual_bonds[resname]:
|
882 |
-
atom1_idx = atom_list.index(b.atom1_name)
|
883 |
-
atom2_idx = atom_list.index(b.atom2_name)
|
884 |
-
lower = b.length - bond_length_tolerance_factor * b.stddev
|
885 |
-
upper = b.length + bond_length_tolerance_factor * b.stddev
|
886 |
-
restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower
|
887 |
-
restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower
|
888 |
-
restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper
|
889 |
-
restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper
|
890 |
-
restype_atom14_bond_stddev[restype, atom1_idx, atom2_idx] = b.stddev
|
891 |
-
restype_atom14_bond_stddev[restype, atom2_idx, atom1_idx] = b.stddev
|
892 |
-
return {'lower_bound': restype_atom14_bond_lower_bound, # shape (21,14,14)
|
893 |
-
'upper_bound': restype_atom14_bond_upper_bound, # shape (21,14,14)
|
894 |
-
'stddev': restype_atom14_bond_stddev, # shape (21,14,14)
|
895 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/common/residue_constants_test.py
DELETED
@@ -1,190 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Test that residue_constants generates correct values."""
|
16 |
-
|
17 |
-
from absl.testing import absltest
|
18 |
-
from absl.testing import parameterized
|
19 |
-
from alphafold.common import residue_constants
|
20 |
-
import numpy as np
|
21 |
-
|
22 |
-
|
23 |
-
class ResidueConstantsTest(parameterized.TestCase):
|
24 |
-
|
25 |
-
@parameterized.parameters(
|
26 |
-
('ALA', 0),
|
27 |
-
('CYS', 1),
|
28 |
-
('HIS', 2),
|
29 |
-
('MET', 3),
|
30 |
-
('LYS', 4),
|
31 |
-
('ARG', 4),
|
32 |
-
)
|
33 |
-
def testChiAnglesAtoms(self, residue_name, chi_num):
|
34 |
-
chi_angles_atoms = residue_constants.chi_angles_atoms[residue_name]
|
35 |
-
self.assertLen(chi_angles_atoms, chi_num)
|
36 |
-
for chi_angle_atoms in chi_angles_atoms:
|
37 |
-
self.assertLen(chi_angle_atoms, 4)
|
38 |
-
|
39 |
-
def testChiGroupsForAtom(self):
|
40 |
-
for k, chi_groups in residue_constants.chi_groups_for_atom.items():
|
41 |
-
res_name, atom_name = k
|
42 |
-
for chi_group_i, atom_i in chi_groups:
|
43 |
-
self.assertEqual(
|
44 |
-
atom_name,
|
45 |
-
residue_constants.chi_angles_atoms[res_name][chi_group_i][atom_i])
|
46 |
-
|
47 |
-
@parameterized.parameters(
|
48 |
-
('ALA', 5), ('ARG', 11), ('ASN', 8), ('ASP', 8), ('CYS', 6), ('GLN', 9),
|
49 |
-
('GLU', 9), ('GLY', 4), ('HIS', 10), ('ILE', 8), ('LEU', 8), ('LYS', 9),
|
50 |
-
('MET', 8), ('PHE', 11), ('PRO', 7), ('SER', 6), ('THR', 7), ('TRP', 14),
|
51 |
-
('TYR', 12), ('VAL', 7)
|
52 |
-
)
|
53 |
-
def testResidueAtoms(self, atom_name, num_residue_atoms):
|
54 |
-
residue_atoms = residue_constants.residue_atoms[atom_name]
|
55 |
-
self.assertLen(residue_atoms, num_residue_atoms)
|
56 |
-
|
57 |
-
def testStandardAtomMask(self):
|
58 |
-
with self.subTest('Check shape'):
|
59 |
-
self.assertEqual(residue_constants.STANDARD_ATOM_MASK.shape, (21, 37,))
|
60 |
-
|
61 |
-
with self.subTest('Check values'):
|
62 |
-
str_to_row = lambda s: [c == '1' for c in s] # More clear/concise.
|
63 |
-
np.testing.assert_array_equal(
|
64 |
-
residue_constants.STANDARD_ATOM_MASK,
|
65 |
-
np.array([
|
66 |
-
# NB This was defined by c+p but looks sane.
|
67 |
-
str_to_row('11111 '), # ALA
|
68 |
-
str_to_row('111111 1 1 11 1 '), # ARG
|
69 |
-
str_to_row('111111 11 '), # ASP
|
70 |
-
str_to_row('111111 11 '), # ASN
|
71 |
-
str_to_row('11111 1 '), # CYS
|
72 |
-
str_to_row('111111 1 11 '), # GLU
|
73 |
-
str_to_row('111111 1 11 '), # GLN
|
74 |
-
str_to_row('111 1 '), # GLY
|
75 |
-
str_to_row('111111 11 1 1 '), # HIS
|
76 |
-
str_to_row('11111 11 1 '), # ILE
|
77 |
-
str_to_row('111111 11 '), # LEU
|
78 |
-
str_to_row('111111 1 1 1 '), # LYS
|
79 |
-
str_to_row('111111 11 '), # MET
|
80 |
-
str_to_row('111111 11 11 1 '), # PHE
|
81 |
-
str_to_row('111111 1 '), # PRO
|
82 |
-
str_to_row('11111 1 '), # SER
|
83 |
-
str_to_row('11111 1 1 '), # THR
|
84 |
-
str_to_row('111111 11 11 1 1 11 '), # TRP
|
85 |
-
str_to_row('111111 11 11 11 '), # TYR
|
86 |
-
str_to_row('11111 11 '), # VAL
|
87 |
-
str_to_row(' '), # UNK
|
88 |
-
]))
|
89 |
-
|
90 |
-
with self.subTest('Check row totals'):
|
91 |
-
# Check each row has the right number of atoms.
|
92 |
-
for row, restype in enumerate(residue_constants.restypes): # A, R, ...
|
93 |
-
long_restype = residue_constants.restype_1to3[restype] # ALA, ARG, ...
|
94 |
-
atoms_names = residue_constants.residue_atoms[
|
95 |
-
long_restype] # ['C', 'CA', 'CB', 'N', 'O'], ...
|
96 |
-
self.assertLen(atoms_names,
|
97 |
-
residue_constants.STANDARD_ATOM_MASK[row, :].sum(),
|
98 |
-
long_restype)
|
99 |
-
|
100 |
-
def testAtomTypes(self):
|
101 |
-
self.assertEqual(residue_constants.atom_type_num, 37)
|
102 |
-
|
103 |
-
self.assertEqual(residue_constants.atom_types[0], 'N')
|
104 |
-
self.assertEqual(residue_constants.atom_types[1], 'CA')
|
105 |
-
self.assertEqual(residue_constants.atom_types[2], 'C')
|
106 |
-
self.assertEqual(residue_constants.atom_types[3], 'CB')
|
107 |
-
self.assertEqual(residue_constants.atom_types[4], 'O')
|
108 |
-
|
109 |
-
self.assertEqual(residue_constants.atom_order['N'], 0)
|
110 |
-
self.assertEqual(residue_constants.atom_order['CA'], 1)
|
111 |
-
self.assertEqual(residue_constants.atom_order['C'], 2)
|
112 |
-
self.assertEqual(residue_constants.atom_order['CB'], 3)
|
113 |
-
self.assertEqual(residue_constants.atom_order['O'], 4)
|
114 |
-
self.assertEqual(residue_constants.atom_type_num, 37)
|
115 |
-
|
116 |
-
def testRestypes(self):
|
117 |
-
three_letter_restypes = [
|
118 |
-
residue_constants.restype_1to3[r] for r in residue_constants.restypes]
|
119 |
-
for restype, exp_restype in zip(
|
120 |
-
three_letter_restypes, sorted(residue_constants.restype_1to3.values())):
|
121 |
-
self.assertEqual(restype, exp_restype)
|
122 |
-
self.assertEqual(residue_constants.restype_num, 20)
|
123 |
-
|
124 |
-
def testSequenceToOneHotHHBlits(self):
|
125 |
-
one_hot = residue_constants.sequence_to_onehot(
|
126 |
-
'ABCDEFGHIJKLMNOPQRSTUVWXYZ-', residue_constants.HHBLITS_AA_TO_ID)
|
127 |
-
exp_one_hot = np.array(
|
128 |
-
[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
129 |
-
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
130 |
-
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
131 |
-
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
132 |
-
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
133 |
-
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
134 |
-
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
135 |
-
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
136 |
-
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
137 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
|
138 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
139 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
140 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
141 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
142 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
|
143 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
144 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
|
145 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
|
146 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
|
147 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
|
148 |
-
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
149 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
|
150 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
|
151 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
|
152 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
|
153 |
-
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
154 |
-
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
|
155 |
-
np.testing.assert_array_equal(one_hot, exp_one_hot)
|
156 |
-
|
157 |
-
def testSequenceToOneHotStandard(self):
|
158 |
-
one_hot = residue_constants.sequence_to_onehot(
|
159 |
-
'ARNDCQEGHILKMFPSTWYV', residue_constants.restype_order)
|
160 |
-
np.testing.assert_array_equal(one_hot, np.eye(20))
|
161 |
-
|
162 |
-
def testSequenceToOneHotUnknownMapping(self):
|
163 |
-
seq = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
|
164 |
-
expected_out = np.zeros([26, 21])
|
165 |
-
for row, position in enumerate(
|
166 |
-
[0, 20, 4, 3, 6, 13, 7, 8, 9, 20, 11, 10, 12, 2, 20, 14, 5, 1, 15, 16,
|
167 |
-
20, 19, 17, 20, 18, 20]):
|
168 |
-
expected_out[row, position] = 1
|
169 |
-
aa_types = residue_constants.sequence_to_onehot(
|
170 |
-
sequence=seq,
|
171 |
-
mapping=residue_constants.restype_order_with_x,
|
172 |
-
map_unknown_to_x=True)
|
173 |
-
self.assertTrue((aa_types == expected_out).all())
|
174 |
-
|
175 |
-
@parameterized.named_parameters(
|
176 |
-
('lowercase', 'aaa'), # Insertions in A3M.
|
177 |
-
('gaps', '---'), # Gaps in A3M.
|
178 |
-
('dots', '...'), # Gaps in A3M.
|
179 |
-
('metadata', '>TEST'), # FASTA metadata line.
|
180 |
-
)
|
181 |
-
def testSequenceToOneHotUnknownMappingError(self, seq):
|
182 |
-
with self.assertRaises(ValueError):
|
183 |
-
residue_constants.sequence_to_onehot(
|
184 |
-
sequence=seq,
|
185 |
-
mapping=residue_constants.restype_order_with_x,
|
186 |
-
map_unknown_to_x=True)
|
187 |
-
|
188 |
-
|
189 |
-
if __name__ == '__main__':
|
190 |
-
absltest.main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/common/testdata/2rbg.pdb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
alphafold/alphafold/data/__init__.py
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""Data pipeline for model features."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/data/__pycache__/__init__.cpython-36.pyc
DELETED
Binary file (191 Bytes)
|
|
alphafold/alphafold/data/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (208 Bytes)
|
|
alphafold/alphafold/data/__pycache__/mmcif_parsing.cpython-36.pyc
DELETED
Binary file (11.4 kB)
|
|
alphafold/alphafold/data/__pycache__/mmcif_parsing.cpython-38.pyc
DELETED
Binary file (11.5 kB)
|
|
alphafold/alphafold/data/__pycache__/parsers.cpython-36.pyc
DELETED
Binary file (9.79 kB)
|
|
alphafold/alphafold/data/__pycache__/parsers.cpython-38.pyc
DELETED
Binary file (9.9 kB)
|
|
alphafold/alphafold/data/__pycache__/pipeline.cpython-36.pyc
DELETED
Binary file (5.88 kB)
|
|
alphafold/alphafold/data/__pycache__/pipeline.cpython-38.pyc
DELETED
Binary file (6.02 kB)
|
|
alphafold/alphafold/data/__pycache__/templates.cpython-36.pyc
DELETED
Binary file (27.7 kB)
|
|
alphafold/alphafold/data/__pycache__/templates.cpython-38.pyc
DELETED
Binary file (27.9 kB)
|
|
alphafold/alphafold/data/mmcif_parsing.py
DELETED
@@ -1,384 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Parses the mmCIF file format."""
|
16 |
-
import collections
|
17 |
-
import dataclasses
|
18 |
-
import io
|
19 |
-
from typing import Any, Mapping, Optional, Sequence, Tuple
|
20 |
-
|
21 |
-
from absl import logging
|
22 |
-
from Bio import PDB
|
23 |
-
from Bio.Data import SCOPData
|
24 |
-
|
25 |
-
# Type aliases:
|
26 |
-
ChainId = str
|
27 |
-
PdbHeader = Mapping[str, Any]
|
28 |
-
PdbStructure = PDB.Structure.Structure
|
29 |
-
SeqRes = str
|
30 |
-
MmCIFDict = Mapping[str, Sequence[str]]
|
31 |
-
|
32 |
-
|
33 |
-
@dataclasses.dataclass(frozen=True)
|
34 |
-
class Monomer:
|
35 |
-
id: str
|
36 |
-
num: int
|
37 |
-
|
38 |
-
|
39 |
-
# Note - mmCIF format provides no guarantees on the type of author-assigned
|
40 |
-
# sequence numbers. They need not be integers.
|
41 |
-
@dataclasses.dataclass(frozen=True)
|
42 |
-
class AtomSite:
|
43 |
-
residue_name: str
|
44 |
-
author_chain_id: str
|
45 |
-
mmcif_chain_id: str
|
46 |
-
author_seq_num: str
|
47 |
-
mmcif_seq_num: int
|
48 |
-
insertion_code: str
|
49 |
-
hetatm_atom: str
|
50 |
-
model_num: int
|
51 |
-
|
52 |
-
|
53 |
-
# Used to map SEQRES index to a residue in the structure.
|
54 |
-
@dataclasses.dataclass(frozen=True)
|
55 |
-
class ResiduePosition:
|
56 |
-
chain_id: str
|
57 |
-
residue_number: int
|
58 |
-
insertion_code: str
|
59 |
-
|
60 |
-
|
61 |
-
@dataclasses.dataclass(frozen=True)
|
62 |
-
class ResidueAtPosition:
|
63 |
-
position: Optional[ResiduePosition]
|
64 |
-
name: str
|
65 |
-
is_missing: bool
|
66 |
-
hetflag: str
|
67 |
-
|
68 |
-
|
69 |
-
@dataclasses.dataclass(frozen=True)
|
70 |
-
class MmcifObject:
|
71 |
-
"""Representation of a parsed mmCIF file.
|
72 |
-
|
73 |
-
Contains:
|
74 |
-
file_id: A meaningful name, e.g. a pdb_id. Should be unique amongst all
|
75 |
-
files being processed.
|
76 |
-
header: Biopython header.
|
77 |
-
structure: Biopython structure.
|
78 |
-
chain_to_seqres: Dict mapping chain_id to 1 letter amino acid sequence. E.g.
|
79 |
-
{'A': 'ABCDEFG'}
|
80 |
-
seqres_to_structure: Dict; for each chain_id contains a mapping between
|
81 |
-
SEQRES index and a ResidueAtPosition. e.g. {'A': {0: ResidueAtPosition,
|
82 |
-
1: ResidueAtPosition,
|
83 |
-
...}}
|
84 |
-
raw_string: The raw string used to construct the MmcifObject.
|
85 |
-
"""
|
86 |
-
file_id: str
|
87 |
-
header: PdbHeader
|
88 |
-
structure: PdbStructure
|
89 |
-
chain_to_seqres: Mapping[ChainId, SeqRes]
|
90 |
-
seqres_to_structure: Mapping[ChainId, Mapping[int, ResidueAtPosition]]
|
91 |
-
raw_string: Any
|
92 |
-
|
93 |
-
|
94 |
-
@dataclasses.dataclass(frozen=True)
|
95 |
-
class ParsingResult:
|
96 |
-
"""Returned by the parse function.
|
97 |
-
|
98 |
-
Contains:
|
99 |
-
mmcif_object: A MmcifObject, may be None if no chain could be successfully
|
100 |
-
parsed.
|
101 |
-
errors: A dict mapping (file_id, chain_id) to any exception generated.
|
102 |
-
"""
|
103 |
-
mmcif_object: Optional[MmcifObject]
|
104 |
-
errors: Mapping[Tuple[str, str], Any]
|
105 |
-
|
106 |
-
|
107 |
-
class ParseError(Exception):
|
108 |
-
"""An error indicating that an mmCIF file could not be parsed."""
|
109 |
-
|
110 |
-
|
111 |
-
def mmcif_loop_to_list(prefix: str,
|
112 |
-
parsed_info: MmCIFDict) -> Sequence[Mapping[str, str]]:
|
113 |
-
"""Extracts loop associated with a prefix from mmCIF data as a list.
|
114 |
-
|
115 |
-
Reference for loop_ in mmCIF:
|
116 |
-
http://mmcif.wwpdb.org/docs/tutorials/mechanics/pdbx-mmcif-syntax.html
|
117 |
-
|
118 |
-
Args:
|
119 |
-
prefix: Prefix shared by each of the data items in the loop.
|
120 |
-
e.g. '_entity_poly_seq.', where the data items are _entity_poly_seq.num,
|
121 |
-
_entity_poly_seq.mon_id. Should include the trailing period.
|
122 |
-
parsed_info: A dict of parsed mmCIF data, e.g. _mmcif_dict from a Biopython
|
123 |
-
parser.
|
124 |
-
|
125 |
-
Returns:
|
126 |
-
Returns a list of dicts; each dict represents 1 entry from an mmCIF loop.
|
127 |
-
"""
|
128 |
-
cols = []
|
129 |
-
data = []
|
130 |
-
for key, value in parsed_info.items():
|
131 |
-
if key.startswith(prefix):
|
132 |
-
cols.append(key)
|
133 |
-
data.append(value)
|
134 |
-
|
135 |
-
assert all([len(xs) == len(data[0]) for xs in data]), (
|
136 |
-
'mmCIF error: Not all loops are the same length: %s' % cols)
|
137 |
-
|
138 |
-
return [dict(zip(cols, xs)) for xs in zip(*data)]
|
139 |
-
|
140 |
-
|
141 |
-
def mmcif_loop_to_dict(prefix: str,
|
142 |
-
index: str,
|
143 |
-
parsed_info: MmCIFDict,
|
144 |
-
) -> Mapping[str, Mapping[str, str]]:
|
145 |
-
"""Extracts loop associated with a prefix from mmCIF data as a dictionary.
|
146 |
-
|
147 |
-
Args:
|
148 |
-
prefix: Prefix shared by each of the data items in the loop.
|
149 |
-
e.g. '_entity_poly_seq.', where the data items are _entity_poly_seq.num,
|
150 |
-
_entity_poly_seq.mon_id. Should include the trailing period.
|
151 |
-
index: Which item of loop data should serve as the key.
|
152 |
-
parsed_info: A dict of parsed mmCIF data, e.g. _mmcif_dict from a Biopython
|
153 |
-
parser.
|
154 |
-
|
155 |
-
Returns:
|
156 |
-
Returns a dict of dicts; each dict represents 1 entry from an mmCIF loop,
|
157 |
-
indexed by the index column.
|
158 |
-
"""
|
159 |
-
entries = mmcif_loop_to_list(prefix, parsed_info)
|
160 |
-
return {entry[index]: entry for entry in entries}
|
161 |
-
|
162 |
-
|
163 |
-
def parse(*,
|
164 |
-
file_id: str,
|
165 |
-
mmcif_string: str,
|
166 |
-
catch_all_errors: bool = True) -> ParsingResult:
|
167 |
-
"""Entry point, parses an mmcif_string.
|
168 |
-
|
169 |
-
Args:
|
170 |
-
file_id: A string identifier for this file. Should be unique within the
|
171 |
-
collection of files being processed.
|
172 |
-
mmcif_string: Contents of an mmCIF file.
|
173 |
-
catch_all_errors: If True, all exceptions are caught and error messages are
|
174 |
-
returned as part of the ParsingResult. If False exceptions will be allowed
|
175 |
-
to propagate.
|
176 |
-
|
177 |
-
Returns:
|
178 |
-
A ParsingResult.
|
179 |
-
"""
|
180 |
-
errors = {}
|
181 |
-
try:
|
182 |
-
parser = PDB.MMCIFParser(QUIET=True)
|
183 |
-
handle = io.StringIO(mmcif_string)
|
184 |
-
full_structure = parser.get_structure('', handle)
|
185 |
-
first_model_structure = _get_first_model(full_structure)
|
186 |
-
# Extract the _mmcif_dict from the parser, which contains useful fields not
|
187 |
-
# reflected in the Biopython structure.
|
188 |
-
parsed_info = parser._mmcif_dict # pylint:disable=protected-access
|
189 |
-
|
190 |
-
# Ensure all values are lists, even if singletons.
|
191 |
-
for key, value in parsed_info.items():
|
192 |
-
if not isinstance(value, list):
|
193 |
-
parsed_info[key] = [value]
|
194 |
-
|
195 |
-
header = _get_header(parsed_info)
|
196 |
-
|
197 |
-
# Determine the protein chains, and their start numbers according to the
|
198 |
-
# internal mmCIF numbering scheme (likely but not guaranteed to be 1).
|
199 |
-
valid_chains = _get_protein_chains(parsed_info=parsed_info)
|
200 |
-
if not valid_chains:
|
201 |
-
return ParsingResult(
|
202 |
-
None, {(file_id, ''): 'No protein chains found in this file.'})
|
203 |
-
seq_start_num = {chain_id: min([monomer.num for monomer in seq])
|
204 |
-
for chain_id, seq in valid_chains.items()}
|
205 |
-
|
206 |
-
# Loop over the atoms for which we have coordinates. Populate two mappings:
|
207 |
-
# -mmcif_to_author_chain_id (maps internal mmCIF chain ids to chain ids used
|
208 |
-
# the authors / Biopython).
|
209 |
-
# -seq_to_structure_mappings (maps idx into sequence to ResidueAtPosition).
|
210 |
-
mmcif_to_author_chain_id = {}
|
211 |
-
seq_to_structure_mappings = {}
|
212 |
-
for atom in _get_atom_site_list(parsed_info):
|
213 |
-
if atom.model_num != '1':
|
214 |
-
# We only process the first model at the moment.
|
215 |
-
continue
|
216 |
-
|
217 |
-
mmcif_to_author_chain_id[atom.mmcif_chain_id] = atom.author_chain_id
|
218 |
-
|
219 |
-
if atom.mmcif_chain_id in valid_chains:
|
220 |
-
hetflag = ' '
|
221 |
-
if atom.hetatm_atom == 'HETATM':
|
222 |
-
# Water atoms are assigned a special hetflag of W in Biopython. We
|
223 |
-
# need to do the same, so that this hetflag can be used to fetch
|
224 |
-
# a residue from the Biopython structure by id.
|
225 |
-
if atom.residue_name in ('HOH', 'WAT'):
|
226 |
-
hetflag = 'W'
|
227 |
-
else:
|
228 |
-
hetflag = 'H_' + atom.residue_name
|
229 |
-
insertion_code = atom.insertion_code
|
230 |
-
if not _is_set(atom.insertion_code):
|
231 |
-
insertion_code = ' '
|
232 |
-
position = ResiduePosition(chain_id=atom.author_chain_id,
|
233 |
-
residue_number=int(atom.author_seq_num),
|
234 |
-
insertion_code=insertion_code)
|
235 |
-
seq_idx = int(atom.mmcif_seq_num) - seq_start_num[atom.mmcif_chain_id]
|
236 |
-
current = seq_to_structure_mappings.get(atom.author_chain_id, {})
|
237 |
-
current[seq_idx] = ResidueAtPosition(position=position,
|
238 |
-
name=atom.residue_name,
|
239 |
-
is_missing=False,
|
240 |
-
hetflag=hetflag)
|
241 |
-
seq_to_structure_mappings[atom.author_chain_id] = current
|
242 |
-
|
243 |
-
# Add missing residue information to seq_to_structure_mappings.
|
244 |
-
for chain_id, seq_info in valid_chains.items():
|
245 |
-
author_chain = mmcif_to_author_chain_id[chain_id]
|
246 |
-
current_mapping = seq_to_structure_mappings[author_chain]
|
247 |
-
for idx, monomer in enumerate(seq_info):
|
248 |
-
if idx not in current_mapping:
|
249 |
-
current_mapping[idx] = ResidueAtPosition(position=None,
|
250 |
-
name=monomer.id,
|
251 |
-
is_missing=True,
|
252 |
-
hetflag=' ')
|
253 |
-
|
254 |
-
author_chain_to_sequence = {}
|
255 |
-
for chain_id, seq_info in valid_chains.items():
|
256 |
-
author_chain = mmcif_to_author_chain_id[chain_id]
|
257 |
-
seq = []
|
258 |
-
for monomer in seq_info:
|
259 |
-
code = SCOPData.protein_letters_3to1.get(monomer.id, 'X')
|
260 |
-
seq.append(code if len(code) == 1 else 'X')
|
261 |
-
seq = ''.join(seq)
|
262 |
-
author_chain_to_sequence[author_chain] = seq
|
263 |
-
|
264 |
-
mmcif_object = MmcifObject(
|
265 |
-
file_id=file_id,
|
266 |
-
header=header,
|
267 |
-
structure=first_model_structure,
|
268 |
-
chain_to_seqres=author_chain_to_sequence,
|
269 |
-
seqres_to_structure=seq_to_structure_mappings,
|
270 |
-
raw_string=parsed_info)
|
271 |
-
|
272 |
-
return ParsingResult(mmcif_object=mmcif_object, errors=errors)
|
273 |
-
except Exception as e: # pylint:disable=broad-except
|
274 |
-
errors[(file_id, '')] = e
|
275 |
-
if not catch_all_errors:
|
276 |
-
raise
|
277 |
-
return ParsingResult(mmcif_object=None, errors=errors)
|
278 |
-
|
279 |
-
|
280 |
-
def _get_first_model(structure: PdbStructure) -> PdbStructure:
|
281 |
-
"""Returns the first model in a Biopython structure."""
|
282 |
-
return next(structure.get_models())
|
283 |
-
|
284 |
-
_MIN_LENGTH_OF_CHAIN_TO_BE_COUNTED_AS_PEPTIDE = 21
|
285 |
-
|
286 |
-
|
287 |
-
def get_release_date(parsed_info: MmCIFDict) -> str:
|
288 |
-
"""Returns the oldest revision date."""
|
289 |
-
revision_dates = parsed_info['_pdbx_audit_revision_history.revision_date']
|
290 |
-
return min(revision_dates)
|
291 |
-
|
292 |
-
|
293 |
-
def _get_header(parsed_info: MmCIFDict) -> PdbHeader:
|
294 |
-
"""Returns a basic header containing method, release date and resolution."""
|
295 |
-
header = {}
|
296 |
-
|
297 |
-
experiments = mmcif_loop_to_list('_exptl.', parsed_info)
|
298 |
-
header['structure_method'] = ','.join([
|
299 |
-
experiment['_exptl.method'].lower() for experiment in experiments])
|
300 |
-
|
301 |
-
# Note: The release_date here corresponds to the oldest revision. We prefer to
|
302 |
-
# use this for dataset filtering over the deposition_date.
|
303 |
-
if '_pdbx_audit_revision_history.revision_date' in parsed_info:
|
304 |
-
header['release_date'] = get_release_date(parsed_info)
|
305 |
-
else:
|
306 |
-
logging.warning('Could not determine release_date: %s',
|
307 |
-
parsed_info['_entry.id'])
|
308 |
-
|
309 |
-
header['resolution'] = 0.00
|
310 |
-
for res_key in ('_refine.ls_d_res_high', '_em_3d_reconstruction.resolution',
|
311 |
-
'_reflns.d_resolution_high'):
|
312 |
-
if res_key in parsed_info:
|
313 |
-
try:
|
314 |
-
raw_resolution = parsed_info[res_key][0]
|
315 |
-
header['resolution'] = float(raw_resolution)
|
316 |
-
except ValueError:
|
317 |
-
logging.warning('Invalid resolution format: %s', parsed_info[res_key])
|
318 |
-
|
319 |
-
return header
|
320 |
-
|
321 |
-
|
322 |
-
def _get_atom_site_list(parsed_info: MmCIFDict) -> Sequence[AtomSite]:
|
323 |
-
"""Returns list of atom sites; contains data not present in the structure."""
|
324 |
-
return [AtomSite(*site) for site in zip( # pylint:disable=g-complex-comprehension
|
325 |
-
parsed_info['_atom_site.label_comp_id'],
|
326 |
-
parsed_info['_atom_site.auth_asym_id'],
|
327 |
-
parsed_info['_atom_site.label_asym_id'],
|
328 |
-
parsed_info['_atom_site.auth_seq_id'],
|
329 |
-
parsed_info['_atom_site.label_seq_id'],
|
330 |
-
parsed_info['_atom_site.pdbx_PDB_ins_code'],
|
331 |
-
parsed_info['_atom_site.group_PDB'],
|
332 |
-
parsed_info['_atom_site.pdbx_PDB_model_num'],
|
333 |
-
)]
|
334 |
-
|
335 |
-
|
336 |
-
def _get_protein_chains(
|
337 |
-
*, parsed_info: Mapping[str, Any]) -> Mapping[ChainId, Sequence[Monomer]]:
|
338 |
-
"""Extracts polymer information for protein chains only.
|
339 |
-
|
340 |
-
Args:
|
341 |
-
parsed_info: _mmcif_dict produced by the Biopython parser.
|
342 |
-
|
343 |
-
Returns:
|
344 |
-
A dict mapping mmcif chain id to a list of Monomers.
|
345 |
-
"""
|
346 |
-
# Get polymer information for each entity in the structure.
|
347 |
-
entity_poly_seqs = mmcif_loop_to_list('_entity_poly_seq.', parsed_info)
|
348 |
-
|
349 |
-
polymers = collections.defaultdict(list)
|
350 |
-
for entity_poly_seq in entity_poly_seqs:
|
351 |
-
polymers[entity_poly_seq['_entity_poly_seq.entity_id']].append(
|
352 |
-
Monomer(id=entity_poly_seq['_entity_poly_seq.mon_id'],
|
353 |
-
num=int(entity_poly_seq['_entity_poly_seq.num'])))
|
354 |
-
|
355 |
-
# Get chemical compositions. Will allow us to identify which of these polymers
|
356 |
-
# are proteins.
|
357 |
-
chem_comps = mmcif_loop_to_dict('_chem_comp.', '_chem_comp.id', parsed_info)
|
358 |
-
|
359 |
-
# Get chains information for each entity. Necessary so that we can return a
|
360 |
-
# dict keyed on chain id rather than entity.
|
361 |
-
struct_asyms = mmcif_loop_to_list('_struct_asym.', parsed_info)
|
362 |
-
|
363 |
-
entity_to_mmcif_chains = collections.defaultdict(list)
|
364 |
-
for struct_asym in struct_asyms:
|
365 |
-
chain_id = struct_asym['_struct_asym.id']
|
366 |
-
entity_id = struct_asym['_struct_asym.entity_id']
|
367 |
-
entity_to_mmcif_chains[entity_id].append(chain_id)
|
368 |
-
|
369 |
-
# Identify and return the valid protein chains.
|
370 |
-
valid_chains = {}
|
371 |
-
for entity_id, seq_info in polymers.items():
|
372 |
-
chain_ids = entity_to_mmcif_chains[entity_id]
|
373 |
-
|
374 |
-
# Reject polymers without any peptide-like components, such as DNA/RNA.
|
375 |
-
if any(['peptide' in chem_comps[monomer.id]['_chem_comp.type']
|
376 |
-
for monomer in seq_info]):
|
377 |
-
for chain_id in chain_ids:
|
378 |
-
valid_chains[chain_id] = seq_info
|
379 |
-
return valid_chains
|
380 |
-
|
381 |
-
|
382 |
-
def _is_set(data: str) -> bool:
|
383 |
-
"""Returns False if data is a special mmCIF character indicating 'unset'."""
|
384 |
-
return data not in ('.', '?')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/data/parsers.py
DELETED
@@ -1,364 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Functions for parsing various file formats."""
|
16 |
-
import collections
|
17 |
-
import dataclasses
|
18 |
-
import re
|
19 |
-
import string
|
20 |
-
from typing import Dict, Iterable, List, Optional, Sequence, Tuple
|
21 |
-
|
22 |
-
DeletionMatrix = Sequence[Sequence[int]]
|
23 |
-
|
24 |
-
|
25 |
-
@dataclasses.dataclass(frozen=True)
|
26 |
-
class TemplateHit:
|
27 |
-
"""Class representing a template hit."""
|
28 |
-
index: int
|
29 |
-
name: str
|
30 |
-
aligned_cols: int
|
31 |
-
sum_probs: float
|
32 |
-
query: str
|
33 |
-
hit_sequence: str
|
34 |
-
indices_query: List[int]
|
35 |
-
indices_hit: List[int]
|
36 |
-
|
37 |
-
|
38 |
-
def parse_fasta(fasta_string: str) -> Tuple[Sequence[str], Sequence[str]]:
|
39 |
-
"""Parses FASTA string and returns list of strings with amino-acid sequences.
|
40 |
-
|
41 |
-
Arguments:
|
42 |
-
fasta_string: The string contents of a FASTA file.
|
43 |
-
|
44 |
-
Returns:
|
45 |
-
A tuple of two lists:
|
46 |
-
* A list of sequences.
|
47 |
-
* A list of sequence descriptions taken from the comment lines. In the
|
48 |
-
same order as the sequences.
|
49 |
-
"""
|
50 |
-
sequences = []
|
51 |
-
descriptions = []
|
52 |
-
index = -1
|
53 |
-
for line in fasta_string.splitlines():
|
54 |
-
line = line.strip()
|
55 |
-
if line.startswith('>'):
|
56 |
-
index += 1
|
57 |
-
descriptions.append(line[1:]) # Remove the '>' at the beginning.
|
58 |
-
sequences.append('')
|
59 |
-
continue
|
60 |
-
elif not line:
|
61 |
-
continue # Skip blank lines.
|
62 |
-
sequences[index] += line
|
63 |
-
|
64 |
-
return sequences, descriptions
|
65 |
-
|
66 |
-
|
67 |
-
def parse_stockholm(
|
68 |
-
stockholm_string: str
|
69 |
-
) -> Tuple[Sequence[str], DeletionMatrix, Sequence[str]]:
|
70 |
-
"""Parses sequences and deletion matrix from stockholm format alignment.
|
71 |
-
|
72 |
-
Args:
|
73 |
-
stockholm_string: The string contents of a stockholm file. The first
|
74 |
-
sequence in the file should be the query sequence.
|
75 |
-
|
76 |
-
Returns:
|
77 |
-
A tuple of:
|
78 |
-
* A list of sequences that have been aligned to the query. These
|
79 |
-
might contain duplicates.
|
80 |
-
* The deletion matrix for the alignment as a list of lists. The element
|
81 |
-
at `deletion_matrix[i][j]` is the number of residues deleted from
|
82 |
-
the aligned sequence i at residue position j.
|
83 |
-
* The names of the targets matched, including the jackhmmer subsequence
|
84 |
-
suffix.
|
85 |
-
"""
|
86 |
-
name_to_sequence = collections.OrderedDict()
|
87 |
-
for line in stockholm_string.splitlines():
|
88 |
-
line = line.strip()
|
89 |
-
if not line or line.startswith(('#', '//')):
|
90 |
-
continue
|
91 |
-
name, sequence = line.split()
|
92 |
-
if name not in name_to_sequence:
|
93 |
-
name_to_sequence[name] = ''
|
94 |
-
name_to_sequence[name] += sequence
|
95 |
-
|
96 |
-
msa = []
|
97 |
-
deletion_matrix = []
|
98 |
-
|
99 |
-
query = ''
|
100 |
-
keep_columns = []
|
101 |
-
for seq_index, sequence in enumerate(name_to_sequence.values()):
|
102 |
-
if seq_index == 0:
|
103 |
-
# Gather the columns with gaps from the query
|
104 |
-
query = sequence
|
105 |
-
keep_columns = [i for i, res in enumerate(query) if res != '-']
|
106 |
-
|
107 |
-
# Remove the columns with gaps in the query from all sequences.
|
108 |
-
aligned_sequence = ''.join([sequence[c] for c in keep_columns])
|
109 |
-
|
110 |
-
msa.append(aligned_sequence)
|
111 |
-
|
112 |
-
# Count the number of deletions w.r.t. query.
|
113 |
-
deletion_vec = []
|
114 |
-
deletion_count = 0
|
115 |
-
for seq_res, query_res in zip(sequence, query):
|
116 |
-
if seq_res != '-' or query_res != '-':
|
117 |
-
if query_res == '-':
|
118 |
-
deletion_count += 1
|
119 |
-
else:
|
120 |
-
deletion_vec.append(deletion_count)
|
121 |
-
deletion_count = 0
|
122 |
-
deletion_matrix.append(deletion_vec)
|
123 |
-
|
124 |
-
return msa, deletion_matrix, list(name_to_sequence.keys())
|
125 |
-
|
126 |
-
|
127 |
-
def parse_a3m(a3m_string: str) -> Tuple[Sequence[str], DeletionMatrix]:
|
128 |
-
"""Parses sequences and deletion matrix from a3m format alignment.
|
129 |
-
|
130 |
-
Args:
|
131 |
-
a3m_string: The string contents of a a3m file. The first sequence in the
|
132 |
-
file should be the query sequence.
|
133 |
-
|
134 |
-
Returns:
|
135 |
-
A tuple of:
|
136 |
-
* A list of sequences that have been aligned to the query. These
|
137 |
-
might contain duplicates.
|
138 |
-
* The deletion matrix for the alignment as a list of lists. The element
|
139 |
-
at `deletion_matrix[i][j]` is the number of residues deleted from
|
140 |
-
the aligned sequence i at residue position j.
|
141 |
-
"""
|
142 |
-
sequences, _ = parse_fasta(a3m_string)
|
143 |
-
deletion_matrix = []
|
144 |
-
for msa_sequence in sequences:
|
145 |
-
deletion_vec = []
|
146 |
-
deletion_count = 0
|
147 |
-
for j in msa_sequence:
|
148 |
-
if j.islower():
|
149 |
-
deletion_count += 1
|
150 |
-
else:
|
151 |
-
deletion_vec.append(deletion_count)
|
152 |
-
deletion_count = 0
|
153 |
-
deletion_matrix.append(deletion_vec)
|
154 |
-
|
155 |
-
# Make the MSA matrix out of aligned (deletion-free) sequences.
|
156 |
-
deletion_table = str.maketrans('', '', string.ascii_lowercase)
|
157 |
-
aligned_sequences = [s.translate(deletion_table) for s in sequences]
|
158 |
-
return aligned_sequences, deletion_matrix
|
159 |
-
|
160 |
-
|
161 |
-
def _convert_sto_seq_to_a3m(
|
162 |
-
query_non_gaps: Sequence[bool], sto_seq: str) -> Iterable[str]:
|
163 |
-
for is_query_res_non_gap, sequence_res in zip(query_non_gaps, sto_seq):
|
164 |
-
if is_query_res_non_gap:
|
165 |
-
yield sequence_res
|
166 |
-
elif sequence_res != '-':
|
167 |
-
yield sequence_res.lower()
|
168 |
-
|
169 |
-
|
170 |
-
def convert_stockholm_to_a3m(stockholm_format: str,
|
171 |
-
max_sequences: Optional[int] = None) -> str:
|
172 |
-
"""Converts MSA in Stockholm format to the A3M format."""
|
173 |
-
descriptions = {}
|
174 |
-
sequences = {}
|
175 |
-
reached_max_sequences = False
|
176 |
-
|
177 |
-
for line in stockholm_format.splitlines():
|
178 |
-
reached_max_sequences = max_sequences and len(sequences) >= max_sequences
|
179 |
-
if line.strip() and not line.startswith(('#', '//')):
|
180 |
-
# Ignore blank lines, markup and end symbols - remainder are alignment
|
181 |
-
# sequence parts.
|
182 |
-
seqname, aligned_seq = line.split(maxsplit=1)
|
183 |
-
if seqname not in sequences:
|
184 |
-
if reached_max_sequences:
|
185 |
-
continue
|
186 |
-
sequences[seqname] = ''
|
187 |
-
sequences[seqname] += aligned_seq
|
188 |
-
|
189 |
-
for line in stockholm_format.splitlines():
|
190 |
-
if line[:4] == '#=GS':
|
191 |
-
# Description row - example format is:
|
192 |
-
# #=GS UniRef90_Q9H5Z4/4-78 DE [subseq from] cDNA: FLJ22755 ...
|
193 |
-
columns = line.split(maxsplit=3)
|
194 |
-
seqname, feature = columns[1:3]
|
195 |
-
value = columns[3] if len(columns) == 4 else ''
|
196 |
-
if feature != 'DE':
|
197 |
-
continue
|
198 |
-
if reached_max_sequences and seqname not in sequences:
|
199 |
-
continue
|
200 |
-
descriptions[seqname] = value
|
201 |
-
if len(descriptions) == len(sequences):
|
202 |
-
break
|
203 |
-
|
204 |
-
# Convert sto format to a3m line by line
|
205 |
-
a3m_sequences = {}
|
206 |
-
# query_sequence is assumed to be the first sequence
|
207 |
-
query_sequence = next(iter(sequences.values()))
|
208 |
-
query_non_gaps = [res != '-' for res in query_sequence]
|
209 |
-
for seqname, sto_sequence in sequences.items():
|
210 |
-
a3m_sequences[seqname] = ''.join(
|
211 |
-
_convert_sto_seq_to_a3m(query_non_gaps, sto_sequence))
|
212 |
-
|
213 |
-
fasta_chunks = (f">{k} {descriptions.get(k, '')}\n{a3m_sequences[k]}"
|
214 |
-
for k in a3m_sequences)
|
215 |
-
return '\n'.join(fasta_chunks) + '\n' # Include terminating newline.
|
216 |
-
|
217 |
-
|
218 |
-
def _get_hhr_line_regex_groups(
|
219 |
-
regex_pattern: str, line: str) -> Sequence[Optional[str]]:
|
220 |
-
match = re.match(regex_pattern, line)
|
221 |
-
if match is None:
|
222 |
-
raise RuntimeError(f'Could not parse query line {line}')
|
223 |
-
return match.groups()
|
224 |
-
|
225 |
-
|
226 |
-
def _update_hhr_residue_indices_list(
|
227 |
-
sequence: str, start_index: int, indices_list: List[int]):
|
228 |
-
"""Computes the relative indices for each residue with respect to the original sequence."""
|
229 |
-
counter = start_index
|
230 |
-
for symbol in sequence:
|
231 |
-
if symbol == '-':
|
232 |
-
indices_list.append(-1)
|
233 |
-
else:
|
234 |
-
indices_list.append(counter)
|
235 |
-
counter += 1
|
236 |
-
|
237 |
-
|
238 |
-
def _parse_hhr_hit(detailed_lines: Sequence[str]) -> TemplateHit:
|
239 |
-
"""Parses the detailed HMM HMM comparison section for a single Hit.
|
240 |
-
|
241 |
-
This works on .hhr files generated from both HHBlits and HHSearch.
|
242 |
-
|
243 |
-
Args:
|
244 |
-
detailed_lines: A list of lines from a single comparison section between 2
|
245 |
-
sequences (which each have their own HMM's)
|
246 |
-
|
247 |
-
Returns:
|
248 |
-
A dictionary with the information from that detailed comparison section
|
249 |
-
|
250 |
-
Raises:
|
251 |
-
RuntimeError: If a certain line cannot be processed
|
252 |
-
"""
|
253 |
-
# Parse first 2 lines.
|
254 |
-
number_of_hit = int(detailed_lines[0].split()[-1])
|
255 |
-
name_hit = detailed_lines[1][1:]
|
256 |
-
|
257 |
-
# Parse the summary line.
|
258 |
-
pattern = (
|
259 |
-
'Probab=(.*)[\t ]*E-value=(.*)[\t ]*Score=(.*)[\t ]*Aligned_cols=(.*)[\t'
|
260 |
-
' ]*Identities=(.*)%[\t ]*Similarity=(.*)[\t ]*Sum_probs=(.*)[\t '
|
261 |
-
']*Template_Neff=(.*)')
|
262 |
-
match = re.match(pattern, detailed_lines[2])
|
263 |
-
if match is None:
|
264 |
-
raise RuntimeError(
|
265 |
-
'Could not parse section: %s. Expected this: \n%s to contain summary.' %
|
266 |
-
(detailed_lines, detailed_lines[2]))
|
267 |
-
(prob_true, e_value, _, aligned_cols, _, _, sum_probs,
|
268 |
-
neff) = [float(x) for x in match.groups()]
|
269 |
-
|
270 |
-
# The next section reads the detailed comparisons. These are in a 'human
|
271 |
-
# readable' format which has a fixed length. The strategy employed is to
|
272 |
-
# assume that each block starts with the query sequence line, and to parse
|
273 |
-
# that with a regexp in order to deduce the fixed length used for that block.
|
274 |
-
query = ''
|
275 |
-
hit_sequence = ''
|
276 |
-
indices_query = []
|
277 |
-
indices_hit = []
|
278 |
-
length_block = None
|
279 |
-
|
280 |
-
for line in detailed_lines[3:]:
|
281 |
-
# Parse the query sequence line
|
282 |
-
if (line.startswith('Q ') and not line.startswith('Q ss_dssp') and
|
283 |
-
not line.startswith('Q ss_pred') and
|
284 |
-
not line.startswith('Q Consensus')):
|
285 |
-
# Thus the first 17 characters must be 'Q <query_name> ', and we can parse
|
286 |
-
# everything after that.
|
287 |
-
# start sequence end total_sequence_length
|
288 |
-
patt = r'[\t ]*([0-9]*) ([A-Z-]*)[\t ]*([0-9]*) \([0-9]*\)'
|
289 |
-
groups = _get_hhr_line_regex_groups(patt, line[17:])
|
290 |
-
|
291 |
-
# Get the length of the parsed block using the start and finish indices,
|
292 |
-
# and ensure it is the same as the actual block length.
|
293 |
-
start = int(groups[0]) - 1 # Make index zero based.
|
294 |
-
delta_query = groups[1]
|
295 |
-
end = int(groups[2])
|
296 |
-
num_insertions = len([x for x in delta_query if x == '-'])
|
297 |
-
length_block = end - start + num_insertions
|
298 |
-
assert length_block == len(delta_query)
|
299 |
-
|
300 |
-
# Update the query sequence and indices list.
|
301 |
-
query += delta_query
|
302 |
-
_update_hhr_residue_indices_list(delta_query, start, indices_query)
|
303 |
-
|
304 |
-
elif line.startswith('T '):
|
305 |
-
# Parse the hit sequence.
|
306 |
-
if (not line.startswith('T ss_dssp') and
|
307 |
-
not line.startswith('T ss_pred') and
|
308 |
-
not line.startswith('T Consensus')):
|
309 |
-
# Thus the first 17 characters must be 'T <hit_name> ', and we can
|
310 |
-
# parse everything after that.
|
311 |
-
# start sequence end total_sequence_length
|
312 |
-
patt = r'[\t ]*([0-9]*) ([A-Z-]*)[\t ]*[0-9]* \([0-9]*\)'
|
313 |
-
groups = _get_hhr_line_regex_groups(patt, line[17:])
|
314 |
-
start = int(groups[0]) - 1 # Make index zero based.
|
315 |
-
delta_hit_sequence = groups[1]
|
316 |
-
assert length_block == len(delta_hit_sequence)
|
317 |
-
|
318 |
-
# Update the hit sequence and indices list.
|
319 |
-
hit_sequence += delta_hit_sequence
|
320 |
-
_update_hhr_residue_indices_list(delta_hit_sequence, start, indices_hit)
|
321 |
-
|
322 |
-
return TemplateHit(
|
323 |
-
index=number_of_hit,
|
324 |
-
name=name_hit,
|
325 |
-
aligned_cols=int(aligned_cols),
|
326 |
-
sum_probs=sum_probs,
|
327 |
-
query=query,
|
328 |
-
hit_sequence=hit_sequence,
|
329 |
-
indices_query=indices_query,
|
330 |
-
indices_hit=indices_hit,
|
331 |
-
)
|
332 |
-
|
333 |
-
|
334 |
-
def parse_hhr(hhr_string: str) -> Sequence[TemplateHit]:
|
335 |
-
"""Parses the content of an entire HHR file."""
|
336 |
-
lines = hhr_string.splitlines()
|
337 |
-
|
338 |
-
# Each .hhr file starts with a results table, then has a sequence of hit
|
339 |
-
# "paragraphs", each paragraph starting with a line 'No <hit number>'. We
|
340 |
-
# iterate through each paragraph to parse each hit.
|
341 |
-
|
342 |
-
block_starts = [i for i, line in enumerate(lines) if line.startswith('No ')]
|
343 |
-
|
344 |
-
hits = []
|
345 |
-
if block_starts:
|
346 |
-
block_starts.append(len(lines)) # Add the end of the final block.
|
347 |
-
for i in range(len(block_starts) - 1):
|
348 |
-
hits.append(_parse_hhr_hit(lines[block_starts[i]:block_starts[i + 1]]))
|
349 |
-
return hits
|
350 |
-
|
351 |
-
|
352 |
-
def parse_e_values_from_tblout(tblout: str) -> Dict[str, float]:
|
353 |
-
"""Parse target to e-value mapping parsed from Jackhmmer tblout string."""
|
354 |
-
e_values = {'query': 0}
|
355 |
-
lines = [line for line in tblout.splitlines() if line[0] != '#']
|
356 |
-
# As per http://eddylab.org/software/hmmer/Userguide.pdf fields are
|
357 |
-
# space-delimited. Relevant fields are (1) target name: and
|
358 |
-
# (5) E-value (full sequence) (numbering from 1).
|
359 |
-
for line in lines:
|
360 |
-
fields = line.split()
|
361 |
-
e_value = fields[4]
|
362 |
-
target_name = fields[0]
|
363 |
-
e_values[target_name] = float(e_value)
|
364 |
-
return e_values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/data/pipeline.py
DELETED
@@ -1,209 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Functions for building the input features for the AlphaFold model."""
|
16 |
-
|
17 |
-
import os
|
18 |
-
from typing import Mapping, Optional, Sequence
|
19 |
-
from absl import logging
|
20 |
-
from alphafold.common import residue_constants
|
21 |
-
from alphafold.data import parsers
|
22 |
-
from alphafold.data import templates
|
23 |
-
from alphafold.data.tools import hhblits
|
24 |
-
from alphafold.data.tools import hhsearch
|
25 |
-
from alphafold.data.tools import jackhmmer
|
26 |
-
import numpy as np
|
27 |
-
|
28 |
-
# Internal import (7716).
|
29 |
-
|
30 |
-
FeatureDict = Mapping[str, np.ndarray]
|
31 |
-
|
32 |
-
|
33 |
-
def make_sequence_features(
|
34 |
-
sequence: str, description: str, num_res: int) -> FeatureDict:
|
35 |
-
"""Constructs a feature dict of sequence features."""
|
36 |
-
features = {}
|
37 |
-
features['aatype'] = residue_constants.sequence_to_onehot(
|
38 |
-
sequence=sequence,
|
39 |
-
mapping=residue_constants.restype_order_with_x,
|
40 |
-
map_unknown_to_x=True)
|
41 |
-
features['between_segment_residues'] = np.zeros((num_res,), dtype=np.int32)
|
42 |
-
features['domain_name'] = np.array([description.encode('utf-8')],
|
43 |
-
dtype=np.object_)
|
44 |
-
features['residue_index'] = np.array(range(num_res), dtype=np.int32)
|
45 |
-
features['seq_length'] = np.array([num_res] * num_res, dtype=np.int32)
|
46 |
-
features['sequence'] = np.array([sequence.encode('utf-8')], dtype=np.object_)
|
47 |
-
return features
|
48 |
-
|
49 |
-
|
50 |
-
def make_msa_features(
|
51 |
-
msas: Sequence[Sequence[str]],
|
52 |
-
deletion_matrices: Sequence[parsers.DeletionMatrix]) -> FeatureDict:
|
53 |
-
"""Constructs a feature dict of MSA features."""
|
54 |
-
if not msas:
|
55 |
-
raise ValueError('At least one MSA must be provided.')
|
56 |
-
|
57 |
-
int_msa = []
|
58 |
-
deletion_matrix = []
|
59 |
-
seen_sequences = set()
|
60 |
-
for msa_index, msa in enumerate(msas):
|
61 |
-
if not msa:
|
62 |
-
raise ValueError(f'MSA {msa_index} must contain at least one sequence.')
|
63 |
-
for sequence_index, sequence in enumerate(msa):
|
64 |
-
if sequence in seen_sequences:
|
65 |
-
continue
|
66 |
-
seen_sequences.add(sequence)
|
67 |
-
int_msa.append(
|
68 |
-
[residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence])
|
69 |
-
deletion_matrix.append(deletion_matrices[msa_index][sequence_index])
|
70 |
-
|
71 |
-
num_res = len(msas[0][0])
|
72 |
-
num_alignments = len(int_msa)
|
73 |
-
features = {}
|
74 |
-
features['deletion_matrix_int'] = np.array(deletion_matrix, dtype=np.int32)
|
75 |
-
features['msa'] = np.array(int_msa, dtype=np.int32)
|
76 |
-
features['num_alignments'] = np.array(
|
77 |
-
[num_alignments] * num_res, dtype=np.int32)
|
78 |
-
return features
|
79 |
-
|
80 |
-
|
81 |
-
class DataPipeline:
|
82 |
-
"""Runs the alignment tools and assembles the input features."""
|
83 |
-
|
84 |
-
def __init__(self,
|
85 |
-
jackhmmer_binary_path: str,
|
86 |
-
hhblits_binary_path: str,
|
87 |
-
hhsearch_binary_path: str,
|
88 |
-
uniref90_database_path: str,
|
89 |
-
mgnify_database_path: str,
|
90 |
-
bfd_database_path: Optional[str],
|
91 |
-
uniclust30_database_path: Optional[str],
|
92 |
-
small_bfd_database_path: Optional[str],
|
93 |
-
pdb70_database_path: str,
|
94 |
-
template_featurizer: templates.TemplateHitFeaturizer,
|
95 |
-
use_small_bfd: bool,
|
96 |
-
mgnify_max_hits: int = 501,
|
97 |
-
uniref_max_hits: int = 10000):
|
98 |
-
"""Constructs a feature dict for a given FASTA file."""
|
99 |
-
self._use_small_bfd = use_small_bfd
|
100 |
-
self.jackhmmer_uniref90_runner = jackhmmer.Jackhmmer(
|
101 |
-
binary_path=jackhmmer_binary_path,
|
102 |
-
database_path=uniref90_database_path)
|
103 |
-
if use_small_bfd:
|
104 |
-
self.jackhmmer_small_bfd_runner = jackhmmer.Jackhmmer(
|
105 |
-
binary_path=jackhmmer_binary_path,
|
106 |
-
database_path=small_bfd_database_path)
|
107 |
-
else:
|
108 |
-
self.hhblits_bfd_uniclust_runner = hhblits.HHBlits(
|
109 |
-
binary_path=hhblits_binary_path,
|
110 |
-
databases=[bfd_database_path, uniclust30_database_path])
|
111 |
-
self.jackhmmer_mgnify_runner = jackhmmer.Jackhmmer(
|
112 |
-
binary_path=jackhmmer_binary_path,
|
113 |
-
database_path=mgnify_database_path)
|
114 |
-
self.hhsearch_pdb70_runner = hhsearch.HHSearch(
|
115 |
-
binary_path=hhsearch_binary_path,
|
116 |
-
databases=[pdb70_database_path])
|
117 |
-
self.template_featurizer = template_featurizer
|
118 |
-
self.mgnify_max_hits = mgnify_max_hits
|
119 |
-
self.uniref_max_hits = uniref_max_hits
|
120 |
-
|
121 |
-
def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict:
|
122 |
-
"""Runs alignment tools on the input sequence and creates features."""
|
123 |
-
with open(input_fasta_path) as f:
|
124 |
-
input_fasta_str = f.read()
|
125 |
-
input_seqs, input_descs = parsers.parse_fasta(input_fasta_str)
|
126 |
-
if len(input_seqs) != 1:
|
127 |
-
raise ValueError(
|
128 |
-
f'More than one input sequence found in {input_fasta_path}.')
|
129 |
-
input_sequence = input_seqs[0]
|
130 |
-
input_description = input_descs[0]
|
131 |
-
num_res = len(input_sequence)
|
132 |
-
|
133 |
-
jackhmmer_uniref90_result = self.jackhmmer_uniref90_runner.query(
|
134 |
-
input_fasta_path)[0]
|
135 |
-
jackhmmer_mgnify_result = self.jackhmmer_mgnify_runner.query(
|
136 |
-
input_fasta_path)[0]
|
137 |
-
|
138 |
-
uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m(
|
139 |
-
jackhmmer_uniref90_result['sto'], max_sequences=self.uniref_max_hits)
|
140 |
-
hhsearch_result = self.hhsearch_pdb70_runner.query(uniref90_msa_as_a3m)
|
141 |
-
|
142 |
-
uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto')
|
143 |
-
with open(uniref90_out_path, 'w') as f:
|
144 |
-
f.write(jackhmmer_uniref90_result['sto'])
|
145 |
-
|
146 |
-
mgnify_out_path = os.path.join(msa_output_dir, 'mgnify_hits.sto')
|
147 |
-
with open(mgnify_out_path, 'w') as f:
|
148 |
-
f.write(jackhmmer_mgnify_result['sto'])
|
149 |
-
|
150 |
-
pdb70_out_path = os.path.join(msa_output_dir, 'pdb70_hits.hhr')
|
151 |
-
with open(pdb70_out_path, 'w') as f:
|
152 |
-
f.write(hhsearch_result)
|
153 |
-
|
154 |
-
uniref90_msa, uniref90_deletion_matrix, _ = parsers.parse_stockholm(
|
155 |
-
jackhmmer_uniref90_result['sto'])
|
156 |
-
mgnify_msa, mgnify_deletion_matrix, _ = parsers.parse_stockholm(
|
157 |
-
jackhmmer_mgnify_result['sto'])
|
158 |
-
hhsearch_hits = parsers.parse_hhr(hhsearch_result)
|
159 |
-
mgnify_msa = mgnify_msa[:self.mgnify_max_hits]
|
160 |
-
mgnify_deletion_matrix = mgnify_deletion_matrix[:self.mgnify_max_hits]
|
161 |
-
|
162 |
-
if self._use_small_bfd:
|
163 |
-
jackhmmer_small_bfd_result = self.jackhmmer_small_bfd_runner.query(
|
164 |
-
input_fasta_path)[0]
|
165 |
-
|
166 |
-
bfd_out_path = os.path.join(msa_output_dir, 'small_bfd_hits.a3m')
|
167 |
-
with open(bfd_out_path, 'w') as f:
|
168 |
-
f.write(jackhmmer_small_bfd_result['sto'])
|
169 |
-
|
170 |
-
bfd_msa, bfd_deletion_matrix, _ = parsers.parse_stockholm(
|
171 |
-
jackhmmer_small_bfd_result['sto'])
|
172 |
-
else:
|
173 |
-
hhblits_bfd_uniclust_result = self.hhblits_bfd_uniclust_runner.query(
|
174 |
-
input_fasta_path)
|
175 |
-
|
176 |
-
bfd_out_path = os.path.join(msa_output_dir, 'bfd_uniclust_hits.a3m')
|
177 |
-
with open(bfd_out_path, 'w') as f:
|
178 |
-
f.write(hhblits_bfd_uniclust_result['a3m'])
|
179 |
-
|
180 |
-
bfd_msa, bfd_deletion_matrix = parsers.parse_a3m(
|
181 |
-
hhblits_bfd_uniclust_result['a3m'])
|
182 |
-
|
183 |
-
templates_result = self.template_featurizer.get_templates(
|
184 |
-
query_sequence=input_sequence,
|
185 |
-
query_pdb_code=None,
|
186 |
-
query_release_date=None,
|
187 |
-
hits=hhsearch_hits)
|
188 |
-
|
189 |
-
sequence_features = make_sequence_features(
|
190 |
-
sequence=input_sequence,
|
191 |
-
description=input_description,
|
192 |
-
num_res=num_res)
|
193 |
-
|
194 |
-
msa_features = make_msa_features(
|
195 |
-
msas=(uniref90_msa, bfd_msa, mgnify_msa),
|
196 |
-
deletion_matrices=(uniref90_deletion_matrix,
|
197 |
-
bfd_deletion_matrix,
|
198 |
-
mgnify_deletion_matrix))
|
199 |
-
|
200 |
-
logging.info('Uniref90 MSA size: %d sequences.', len(uniref90_msa))
|
201 |
-
logging.info('BFD MSA size: %d sequences.', len(bfd_msa))
|
202 |
-
logging.info('MGnify MSA size: %d sequences.', len(mgnify_msa))
|
203 |
-
logging.info('Final (deduplicated) MSA size: %d sequences.',
|
204 |
-
msa_features['num_alignments'][0])
|
205 |
-
logging.info('Total number of templates (NB: this can include bad '
|
206 |
-
'templates and is later filtered to top 4): %d.',
|
207 |
-
templates_result.features['template_domain_names'].shape[0])
|
208 |
-
|
209 |
-
return {**sequence_features, **msa_features, **templates_result.features}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/data/templates.py
DELETED
@@ -1,922 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Functions for getting templates and calculating template features."""
|
16 |
-
import dataclasses
|
17 |
-
import datetime
|
18 |
-
import glob
|
19 |
-
import os
|
20 |
-
import re
|
21 |
-
from typing import Any, Dict, Mapping, Optional, Sequence, Tuple
|
22 |
-
|
23 |
-
from absl import logging
|
24 |
-
from alphafold.common import residue_constants
|
25 |
-
from alphafold.data import mmcif_parsing
|
26 |
-
from alphafold.data import parsers
|
27 |
-
from alphafold.data.tools import kalign
|
28 |
-
import numpy as np
|
29 |
-
|
30 |
-
# Internal import (7716).
|
31 |
-
|
32 |
-
|
33 |
-
class Error(Exception):
|
34 |
-
"""Base class for exceptions."""
|
35 |
-
|
36 |
-
|
37 |
-
class NoChainsError(Error):
|
38 |
-
"""An error indicating that template mmCIF didn't have any chains."""
|
39 |
-
|
40 |
-
|
41 |
-
class SequenceNotInTemplateError(Error):
|
42 |
-
"""An error indicating that template mmCIF didn't contain the sequence."""
|
43 |
-
|
44 |
-
|
45 |
-
class NoAtomDataInTemplateError(Error):
|
46 |
-
"""An error indicating that template mmCIF didn't contain atom positions."""
|
47 |
-
|
48 |
-
|
49 |
-
class TemplateAtomMaskAllZerosError(Error):
|
50 |
-
"""An error indicating that template mmCIF had all atom positions masked."""
|
51 |
-
|
52 |
-
|
53 |
-
class QueryToTemplateAlignError(Error):
|
54 |
-
"""An error indicating that the query can't be aligned to the template."""
|
55 |
-
|
56 |
-
|
57 |
-
class CaDistanceError(Error):
|
58 |
-
"""An error indicating that a CA atom distance exceeds a threshold."""
|
59 |
-
|
60 |
-
|
61 |
-
class MultipleChainsError(Error):
|
62 |
-
"""An error indicating that multiple chains were found for a given ID."""
|
63 |
-
|
64 |
-
|
65 |
-
# Prefilter exceptions.
|
66 |
-
class PrefilterError(Exception):
|
67 |
-
"""A base class for template prefilter exceptions."""
|
68 |
-
|
69 |
-
|
70 |
-
class DateError(PrefilterError):
|
71 |
-
"""An error indicating that the hit date was after the max allowed date."""
|
72 |
-
|
73 |
-
|
74 |
-
class PdbIdError(PrefilterError):
|
75 |
-
"""An error indicating that the hit PDB ID was identical to the query."""
|
76 |
-
|
77 |
-
|
78 |
-
class AlignRatioError(PrefilterError):
|
79 |
-
"""An error indicating that the hit align ratio to the query was too small."""
|
80 |
-
|
81 |
-
|
82 |
-
class DuplicateError(PrefilterError):
|
83 |
-
"""An error indicating that the hit was an exact subsequence of the query."""
|
84 |
-
|
85 |
-
|
86 |
-
class LengthError(PrefilterError):
|
87 |
-
"""An error indicating that the hit was too short."""
|
88 |
-
|
89 |
-
|
90 |
-
TEMPLATE_FEATURES = {
|
91 |
-
'template_aatype': np.float32,
|
92 |
-
'template_all_atom_masks': np.float32,
|
93 |
-
'template_all_atom_positions': np.float32,
|
94 |
-
'template_domain_names': np.object,
|
95 |
-
'template_sequence': np.object,
|
96 |
-
'template_sum_probs': np.float32,
|
97 |
-
}
|
98 |
-
|
99 |
-
|
100 |
-
def _get_pdb_id_and_chain(hit: parsers.TemplateHit) -> Tuple[str, str]:
|
101 |
-
"""Returns PDB id and chain id for an HHSearch Hit."""
|
102 |
-
# PDB ID: 4 letters. Chain ID: 1+ alphanumeric letters or "." if unknown.
|
103 |
-
id_match = re.match(r'[a-zA-Z\d]{4}_[a-zA-Z0-9.]+', hit.name)
|
104 |
-
if not id_match:
|
105 |
-
raise ValueError(f'hit.name did not start with PDBID_chain: {hit.name}')
|
106 |
-
pdb_id, chain_id = id_match.group(0).split('_')
|
107 |
-
return pdb_id.lower(), chain_id
|
108 |
-
|
109 |
-
|
110 |
-
def _is_after_cutoff(
|
111 |
-
pdb_id: str,
|
112 |
-
release_dates: Mapping[str, datetime.datetime],
|
113 |
-
release_date_cutoff: Optional[datetime.datetime]) -> bool:
|
114 |
-
"""Checks if the template date is after the release date cutoff.
|
115 |
-
|
116 |
-
Args:
|
117 |
-
pdb_id: 4 letter pdb code.
|
118 |
-
release_dates: Dictionary mapping PDB ids to their structure release dates.
|
119 |
-
release_date_cutoff: Max release date that is valid for this query.
|
120 |
-
|
121 |
-
Returns:
|
122 |
-
True if the template release date is after the cutoff, False otherwise.
|
123 |
-
"""
|
124 |
-
if release_date_cutoff is None:
|
125 |
-
raise ValueError('The release_date_cutoff must not be None.')
|
126 |
-
if pdb_id in release_dates:
|
127 |
-
return release_dates[pdb_id] > release_date_cutoff
|
128 |
-
else:
|
129 |
-
# Since this is just a quick prefilter to reduce the number of mmCIF files
|
130 |
-
# we need to parse, we don't have to worry about returning True here.
|
131 |
-
logging.warning('Template structure not in release dates dict: %s', pdb_id)
|
132 |
-
return False
|
133 |
-
|
134 |
-
|
135 |
-
def _parse_obsolete(obsolete_file_path: str) -> Mapping[str, Optional[str]]:
|
136 |
-
"""Parses the data file from PDB that lists which pdb_ids are obsolete."""
|
137 |
-
with open(obsolete_file_path) as f:
|
138 |
-
result = {}
|
139 |
-
for line in f:
|
140 |
-
line = line.strip()
|
141 |
-
# Format: Date From To
|
142 |
-
# 'OBSLTE 06-NOV-19 6G9Y' - Removed, rare
|
143 |
-
# 'OBSLTE 31-JUL-94 116L 216L' - Replaced, common
|
144 |
-
# 'OBSLTE 26-SEP-06 2H33 2JM5 2OWI' - Replaced by multiple, rare
|
145 |
-
if line.startswith('OBSLTE'):
|
146 |
-
if len(line) > 30:
|
147 |
-
# Replaced by at least one structure.
|
148 |
-
from_id = line[20:24].lower()
|
149 |
-
to_id = line[29:33].lower()
|
150 |
-
result[from_id] = to_id
|
151 |
-
elif len(line) == 24:
|
152 |
-
# Removed.
|
153 |
-
from_id = line[20:24].lower()
|
154 |
-
result[from_id] = None
|
155 |
-
return result
|
156 |
-
|
157 |
-
|
158 |
-
def _parse_release_dates(path: str) -> Mapping[str, datetime.datetime]:
|
159 |
-
"""Parses release dates file, returns a mapping from PDBs to release dates."""
|
160 |
-
if path.endswith('txt'):
|
161 |
-
release_dates = {}
|
162 |
-
with open(path, 'r') as f:
|
163 |
-
for line in f:
|
164 |
-
pdb_id, date = line.split(':')
|
165 |
-
date = date.strip()
|
166 |
-
# Python 3.6 doesn't have datetime.date.fromisoformat() which is about
|
167 |
-
# 90x faster than strptime. However, splitting the string manually is
|
168 |
-
# about 10x faster than strptime.
|
169 |
-
release_dates[pdb_id.strip()] = datetime.datetime(
|
170 |
-
year=int(date[:4]), month=int(date[5:7]), day=int(date[8:10]))
|
171 |
-
return release_dates
|
172 |
-
else:
|
173 |
-
raise ValueError('Invalid format of the release date file %s.' % path)
|
174 |
-
|
175 |
-
|
176 |
-
def _assess_hhsearch_hit(
|
177 |
-
hit: parsers.TemplateHit,
|
178 |
-
hit_pdb_code: str,
|
179 |
-
query_sequence: str,
|
180 |
-
query_pdb_code: Optional[str],
|
181 |
-
release_dates: Mapping[str, datetime.datetime],
|
182 |
-
release_date_cutoff: datetime.datetime,
|
183 |
-
max_subsequence_ratio: float = 0.95,
|
184 |
-
min_align_ratio: float = 0.1) -> bool:
|
185 |
-
"""Determines if template is valid (without parsing the template mmcif file).
|
186 |
-
|
187 |
-
Args:
|
188 |
-
hit: HhrHit for the template.
|
189 |
-
hit_pdb_code: The 4 letter pdb code of the template hit. This might be
|
190 |
-
different from the value in the actual hit since the original pdb might
|
191 |
-
have become obsolete.
|
192 |
-
query_sequence: Amino acid sequence of the query.
|
193 |
-
query_pdb_code: 4 letter pdb code of the query.
|
194 |
-
release_dates: Dictionary mapping pdb codes to their structure release
|
195 |
-
dates.
|
196 |
-
release_date_cutoff: Max release date that is valid for this query.
|
197 |
-
max_subsequence_ratio: Exclude any exact matches with this much overlap.
|
198 |
-
min_align_ratio: Minimum overlap between the template and query.
|
199 |
-
|
200 |
-
Returns:
|
201 |
-
True if the hit passed the prefilter. Raises an exception otherwise.
|
202 |
-
|
203 |
-
Raises:
|
204 |
-
DateError: If the hit date was after the max allowed date.
|
205 |
-
PdbIdError: If the hit PDB ID was identical to the query.
|
206 |
-
AlignRatioError: If the hit align ratio to the query was too small.
|
207 |
-
DuplicateError: If the hit was an exact subsequence of the query.
|
208 |
-
LengthError: If the hit was too short.
|
209 |
-
"""
|
210 |
-
aligned_cols = hit.aligned_cols
|
211 |
-
align_ratio = aligned_cols / len(query_sequence)
|
212 |
-
|
213 |
-
template_sequence = hit.hit_sequence.replace('-', '')
|
214 |
-
length_ratio = float(len(template_sequence)) / len(query_sequence)
|
215 |
-
|
216 |
-
# Check whether the template is a large subsequence or duplicate of original
|
217 |
-
# query. This can happen due to duplicate entries in the PDB database.
|
218 |
-
duplicate = (template_sequence in query_sequence and
|
219 |
-
length_ratio > max_subsequence_ratio)
|
220 |
-
|
221 |
-
if _is_after_cutoff(hit_pdb_code, release_dates, release_date_cutoff):
|
222 |
-
raise DateError(f'Date ({release_dates[hit_pdb_code]}) > max template date '
|
223 |
-
f'({release_date_cutoff}).')
|
224 |
-
|
225 |
-
if query_pdb_code is not None:
|
226 |
-
if query_pdb_code.lower() == hit_pdb_code.lower():
|
227 |
-
raise PdbIdError('PDB code identical to Query PDB code.')
|
228 |
-
|
229 |
-
if align_ratio <= min_align_ratio:
|
230 |
-
raise AlignRatioError('Proportion of residues aligned to query too small. '
|
231 |
-
f'Align ratio: {align_ratio}.')
|
232 |
-
|
233 |
-
if duplicate:
|
234 |
-
raise DuplicateError('Template is an exact subsequence of query with large '
|
235 |
-
f'coverage. Length ratio: {length_ratio}.')
|
236 |
-
|
237 |
-
if len(template_sequence) < 10:
|
238 |
-
raise LengthError(f'Template too short. Length: {len(template_sequence)}.')
|
239 |
-
|
240 |
-
return True
|
241 |
-
|
242 |
-
|
243 |
-
def _find_template_in_pdb(
|
244 |
-
template_chain_id: str,
|
245 |
-
template_sequence: str,
|
246 |
-
mmcif_object: mmcif_parsing.MmcifObject) -> Tuple[str, str, int]:
|
247 |
-
"""Tries to find the template chain in the given pdb file.
|
248 |
-
|
249 |
-
This method tries the three following things in order:
|
250 |
-
1. Tries if there is an exact match in both the chain ID and the sequence.
|
251 |
-
If yes, the chain sequence is returned. Otherwise:
|
252 |
-
2. Tries if there is an exact match only in the sequence.
|
253 |
-
If yes, the chain sequence is returned. Otherwise:
|
254 |
-
3. Tries if there is a fuzzy match (X = wildcard) in the sequence.
|
255 |
-
If yes, the chain sequence is returned.
|
256 |
-
If none of these succeed, a SequenceNotInTemplateError is thrown.
|
257 |
-
|
258 |
-
Args:
|
259 |
-
template_chain_id: The template chain ID.
|
260 |
-
template_sequence: The template chain sequence.
|
261 |
-
mmcif_object: The PDB object to search for the template in.
|
262 |
-
|
263 |
-
Returns:
|
264 |
-
A tuple with:
|
265 |
-
* The chain sequence that was found to match the template in the PDB object.
|
266 |
-
* The ID of the chain that is being returned.
|
267 |
-
* The offset where the template sequence starts in the chain sequence.
|
268 |
-
|
269 |
-
Raises:
|
270 |
-
SequenceNotInTemplateError: If no match is found after the steps described
|
271 |
-
above.
|
272 |
-
"""
|
273 |
-
# Try if there is an exact match in both the chain ID and the (sub)sequence.
|
274 |
-
pdb_id = mmcif_object.file_id
|
275 |
-
chain_sequence = mmcif_object.chain_to_seqres.get(template_chain_id)
|
276 |
-
if chain_sequence and (template_sequence in chain_sequence):
|
277 |
-
logging.info(
|
278 |
-
'Found an exact template match %s_%s.', pdb_id, template_chain_id)
|
279 |
-
mapping_offset = chain_sequence.find(template_sequence)
|
280 |
-
return chain_sequence, template_chain_id, mapping_offset
|
281 |
-
|
282 |
-
# Try if there is an exact match in the (sub)sequence only.
|
283 |
-
for chain_id, chain_sequence in mmcif_object.chain_to_seqres.items():
|
284 |
-
if chain_sequence and (template_sequence in chain_sequence):
|
285 |
-
logging.info('Found a sequence-only match %s_%s.', pdb_id, chain_id)
|
286 |
-
mapping_offset = chain_sequence.find(template_sequence)
|
287 |
-
return chain_sequence, chain_id, mapping_offset
|
288 |
-
|
289 |
-
# Return a chain sequence that fuzzy matches (X = wildcard) the template.
|
290 |
-
# Make parentheses unnamed groups (?:_) to avoid the 100 named groups limit.
|
291 |
-
regex = ['.' if aa == 'X' else '(?:%s|X)' % aa for aa in template_sequence]
|
292 |
-
regex = re.compile(''.join(regex))
|
293 |
-
for chain_id, chain_sequence in mmcif_object.chain_to_seqres.items():
|
294 |
-
match = re.search(regex, chain_sequence)
|
295 |
-
if match:
|
296 |
-
logging.info('Found a fuzzy sequence-only match %s_%s.', pdb_id, chain_id)
|
297 |
-
mapping_offset = match.start()
|
298 |
-
return chain_sequence, chain_id, mapping_offset
|
299 |
-
|
300 |
-
# No hits, raise an error.
|
301 |
-
raise SequenceNotInTemplateError(
|
302 |
-
'Could not find the template sequence in %s_%s. Template sequence: %s, '
|
303 |
-
'chain_to_seqres: %s' % (pdb_id, template_chain_id, template_sequence,
|
304 |
-
mmcif_object.chain_to_seqres))
|
305 |
-
|
306 |
-
|
307 |
-
def _realign_pdb_template_to_query(
|
308 |
-
old_template_sequence: str,
|
309 |
-
template_chain_id: str,
|
310 |
-
mmcif_object: mmcif_parsing.MmcifObject,
|
311 |
-
old_mapping: Mapping[int, int],
|
312 |
-
kalign_binary_path: str) -> Tuple[str, Mapping[int, int]]:
|
313 |
-
"""Aligns template from the mmcif_object to the query.
|
314 |
-
|
315 |
-
In case PDB70 contains a different version of the template sequence, we need
|
316 |
-
to perform a realignment to the actual sequence that is in the mmCIF file.
|
317 |
-
This method performs such realignment, but returns the new sequence and
|
318 |
-
mapping only if the sequence in the mmCIF file is 90% identical to the old
|
319 |
-
sequence.
|
320 |
-
|
321 |
-
Note that the old_template_sequence comes from the hit, and contains only that
|
322 |
-
part of the chain that matches with the query while the new_template_sequence
|
323 |
-
is the full chain.
|
324 |
-
|
325 |
-
Args:
|
326 |
-
old_template_sequence: The template sequence that was returned by the PDB
|
327 |
-
template search (typically done using HHSearch).
|
328 |
-
template_chain_id: The template chain id was returned by the PDB template
|
329 |
-
search (typically done using HHSearch). This is used to find the right
|
330 |
-
chain in the mmcif_object chain_to_seqres mapping.
|
331 |
-
mmcif_object: A mmcif_object which holds the actual template data.
|
332 |
-
old_mapping: A mapping from the query sequence to the template sequence.
|
333 |
-
This mapping will be used to compute the new mapping from the query
|
334 |
-
sequence to the actual mmcif_object template sequence by aligning the
|
335 |
-
old_template_sequence and the actual template sequence.
|
336 |
-
kalign_binary_path: The path to a kalign executable.
|
337 |
-
|
338 |
-
Returns:
|
339 |
-
A tuple (new_template_sequence, new_query_to_template_mapping) where:
|
340 |
-
* new_template_sequence is the actual template sequence that was found in
|
341 |
-
the mmcif_object.
|
342 |
-
* new_query_to_template_mapping is the new mapping from the query to the
|
343 |
-
actual template found in the mmcif_object.
|
344 |
-
|
345 |
-
Raises:
|
346 |
-
QueryToTemplateAlignError:
|
347 |
-
* If there was an error thrown by the alignment tool.
|
348 |
-
* Or if the actual template sequence differs by more than 10% from the
|
349 |
-
old_template_sequence.
|
350 |
-
"""
|
351 |
-
aligner = kalign.Kalign(binary_path=kalign_binary_path)
|
352 |
-
new_template_sequence = mmcif_object.chain_to_seqres.get(
|
353 |
-
template_chain_id, '')
|
354 |
-
|
355 |
-
# Sometimes the template chain id is unknown. But if there is only a single
|
356 |
-
# sequence within the mmcif_object, it is safe to assume it is that one.
|
357 |
-
if not new_template_sequence:
|
358 |
-
if len(mmcif_object.chain_to_seqres) == 1:
|
359 |
-
logging.info('Could not find %s in %s, but there is only 1 sequence, so '
|
360 |
-
'using that one.',
|
361 |
-
template_chain_id,
|
362 |
-
mmcif_object.file_id)
|
363 |
-
new_template_sequence = list(mmcif_object.chain_to_seqres.values())[0]
|
364 |
-
else:
|
365 |
-
raise QueryToTemplateAlignError(
|
366 |
-
f'Could not find chain {template_chain_id} in {mmcif_object.file_id}. '
|
367 |
-
'If there are no mmCIF parsing errors, it is possible it was not a '
|
368 |
-
'protein chain.')
|
369 |
-
|
370 |
-
try:
|
371 |
-
(old_aligned_template, new_aligned_template), _ = parsers.parse_a3m(
|
372 |
-
aligner.align([old_template_sequence, new_template_sequence]))
|
373 |
-
except Exception as e:
|
374 |
-
raise QueryToTemplateAlignError(
|
375 |
-
'Could not align old template %s to template %s (%s_%s). Error: %s' %
|
376 |
-
(old_template_sequence, new_template_sequence, mmcif_object.file_id,
|
377 |
-
template_chain_id, str(e)))
|
378 |
-
|
379 |
-
logging.info('Old aligned template: %s\nNew aligned template: %s',
|
380 |
-
old_aligned_template, new_aligned_template)
|
381 |
-
|
382 |
-
old_to_new_template_mapping = {}
|
383 |
-
old_template_index = -1
|
384 |
-
new_template_index = -1
|
385 |
-
num_same = 0
|
386 |
-
for old_template_aa, new_template_aa in zip(
|
387 |
-
old_aligned_template, new_aligned_template):
|
388 |
-
if old_template_aa != '-':
|
389 |
-
old_template_index += 1
|
390 |
-
if new_template_aa != '-':
|
391 |
-
new_template_index += 1
|
392 |
-
if old_template_aa != '-' and new_template_aa != '-':
|
393 |
-
old_to_new_template_mapping[old_template_index] = new_template_index
|
394 |
-
if old_template_aa == new_template_aa:
|
395 |
-
num_same += 1
|
396 |
-
|
397 |
-
# Require at least 90 % sequence identity wrt to the shorter of the sequences.
|
398 |
-
if float(num_same) / min(
|
399 |
-
len(old_template_sequence), len(new_template_sequence)) < 0.9:
|
400 |
-
raise QueryToTemplateAlignError(
|
401 |
-
'Insufficient similarity of the sequence in the database: %s to the '
|
402 |
-
'actual sequence in the mmCIF file %s_%s: %s. We require at least '
|
403 |
-
'90 %% similarity wrt to the shorter of the sequences. This is not a '
|
404 |
-
'problem unless you think this is a template that should be included.' %
|
405 |
-
(old_template_sequence, mmcif_object.file_id, template_chain_id,
|
406 |
-
new_template_sequence))
|
407 |
-
|
408 |
-
new_query_to_template_mapping = {}
|
409 |
-
for query_index, old_template_index in old_mapping.items():
|
410 |
-
new_query_to_template_mapping[query_index] = (
|
411 |
-
old_to_new_template_mapping.get(old_template_index, -1))
|
412 |
-
|
413 |
-
new_template_sequence = new_template_sequence.replace('-', '')
|
414 |
-
|
415 |
-
return new_template_sequence, new_query_to_template_mapping
|
416 |
-
|
417 |
-
|
418 |
-
def _check_residue_distances(all_positions: np.ndarray,
|
419 |
-
all_positions_mask: np.ndarray,
|
420 |
-
max_ca_ca_distance: float):
|
421 |
-
"""Checks if the distance between unmasked neighbor residues is ok."""
|
422 |
-
ca_position = residue_constants.atom_order['CA']
|
423 |
-
prev_is_unmasked = False
|
424 |
-
prev_calpha = None
|
425 |
-
for i, (coords, mask) in enumerate(zip(all_positions, all_positions_mask)):
|
426 |
-
this_is_unmasked = bool(mask[ca_position])
|
427 |
-
if this_is_unmasked:
|
428 |
-
this_calpha = coords[ca_position]
|
429 |
-
if prev_is_unmasked:
|
430 |
-
distance = np.linalg.norm(this_calpha - prev_calpha)
|
431 |
-
if distance > max_ca_ca_distance:
|
432 |
-
raise CaDistanceError(
|
433 |
-
'The distance between residues %d and %d is %f > limit %f.' % (
|
434 |
-
i, i + 1, distance, max_ca_ca_distance))
|
435 |
-
prev_calpha = this_calpha
|
436 |
-
prev_is_unmasked = this_is_unmasked
|
437 |
-
|
438 |
-
|
439 |
-
def _get_atom_positions(
|
440 |
-
mmcif_object: mmcif_parsing.MmcifObject,
|
441 |
-
auth_chain_id: str,
|
442 |
-
max_ca_ca_distance: float) -> Tuple[np.ndarray, np.ndarray]:
|
443 |
-
"""Gets atom positions and mask from a list of Biopython Residues."""
|
444 |
-
num_res = len(mmcif_object.chain_to_seqres[auth_chain_id])
|
445 |
-
|
446 |
-
relevant_chains = [c for c in mmcif_object.structure.get_chains()
|
447 |
-
if c.id == auth_chain_id]
|
448 |
-
if len(relevant_chains) != 1:
|
449 |
-
raise MultipleChainsError(
|
450 |
-
f'Expected exactly one chain in structure with id {auth_chain_id}.')
|
451 |
-
chain = relevant_chains[0]
|
452 |
-
|
453 |
-
all_positions = np.zeros([num_res, residue_constants.atom_type_num, 3])
|
454 |
-
all_positions_mask = np.zeros([num_res, residue_constants.atom_type_num],
|
455 |
-
dtype=np.int64)
|
456 |
-
for res_index in range(num_res):
|
457 |
-
pos = np.zeros([residue_constants.atom_type_num, 3], dtype=np.float32)
|
458 |
-
mask = np.zeros([residue_constants.atom_type_num], dtype=np.float32)
|
459 |
-
res_at_position = mmcif_object.seqres_to_structure[auth_chain_id][res_index]
|
460 |
-
if not res_at_position.is_missing:
|
461 |
-
res = chain[(res_at_position.hetflag,
|
462 |
-
res_at_position.position.residue_number,
|
463 |
-
res_at_position.position.insertion_code)]
|
464 |
-
for atom in res.get_atoms():
|
465 |
-
atom_name = atom.get_name()
|
466 |
-
x, y, z = atom.get_coord()
|
467 |
-
if atom_name in residue_constants.atom_order.keys():
|
468 |
-
pos[residue_constants.atom_order[atom_name]] = [x, y, z]
|
469 |
-
mask[residue_constants.atom_order[atom_name]] = 1.0
|
470 |
-
elif atom_name.upper() == 'SE' and res.get_resname() == 'MSE':
|
471 |
-
# Put the coordinates of the selenium atom in the sulphur column.
|
472 |
-
pos[residue_constants.atom_order['SD']] = [x, y, z]
|
473 |
-
mask[residue_constants.atom_order['SD']] = 1.0
|
474 |
-
|
475 |
-
all_positions[res_index] = pos
|
476 |
-
all_positions_mask[res_index] = mask
|
477 |
-
_check_residue_distances(
|
478 |
-
all_positions, all_positions_mask, max_ca_ca_distance)
|
479 |
-
return all_positions, all_positions_mask
|
480 |
-
|
481 |
-
|
482 |
-
def _extract_template_features(
|
483 |
-
mmcif_object: mmcif_parsing.MmcifObject,
|
484 |
-
pdb_id: str,
|
485 |
-
mapping: Mapping[int, int],
|
486 |
-
template_sequence: str,
|
487 |
-
query_sequence: str,
|
488 |
-
template_chain_id: str,
|
489 |
-
kalign_binary_path: str) -> Tuple[Dict[str, Any], Optional[str]]:
|
490 |
-
"""Parses atom positions in the target structure and aligns with the query.
|
491 |
-
|
492 |
-
Atoms for each residue in the template structure are indexed to coincide
|
493 |
-
with their corresponding residue in the query sequence, according to the
|
494 |
-
alignment mapping provided.
|
495 |
-
|
496 |
-
Args:
|
497 |
-
mmcif_object: mmcif_parsing.MmcifObject representing the template.
|
498 |
-
pdb_id: PDB code for the template.
|
499 |
-
mapping: Dictionary mapping indices in the query sequence to indices in
|
500 |
-
the template sequence.
|
501 |
-
template_sequence: String describing the amino acid sequence for the
|
502 |
-
template protein.
|
503 |
-
query_sequence: String describing the amino acid sequence for the query
|
504 |
-
protein.
|
505 |
-
template_chain_id: String ID describing which chain in the structure proto
|
506 |
-
should be used.
|
507 |
-
kalign_binary_path: The path to a kalign executable used for template
|
508 |
-
realignment.
|
509 |
-
|
510 |
-
Returns:
|
511 |
-
A tuple with:
|
512 |
-
* A dictionary containing the extra features derived from the template
|
513 |
-
protein structure.
|
514 |
-
* A warning message if the hit was realigned to the actual mmCIF sequence.
|
515 |
-
Otherwise None.
|
516 |
-
|
517 |
-
Raises:
|
518 |
-
NoChainsError: If the mmcif object doesn't contain any chains.
|
519 |
-
SequenceNotInTemplateError: If the given chain id / sequence can't
|
520 |
-
be found in the mmcif object.
|
521 |
-
QueryToTemplateAlignError: If the actual template in the mmCIF file
|
522 |
-
can't be aligned to the query.
|
523 |
-
NoAtomDataInTemplateError: If the mmcif object doesn't contain
|
524 |
-
atom positions.
|
525 |
-
TemplateAtomMaskAllZerosError: If the mmcif object doesn't have any
|
526 |
-
unmasked residues.
|
527 |
-
"""
|
528 |
-
if mmcif_object is None or not mmcif_object.chain_to_seqres:
|
529 |
-
raise NoChainsError('No chains in PDB: %s_%s' % (pdb_id, template_chain_id))
|
530 |
-
|
531 |
-
warning = None
|
532 |
-
try:
|
533 |
-
seqres, chain_id, mapping_offset = _find_template_in_pdb(
|
534 |
-
template_chain_id=template_chain_id,
|
535 |
-
template_sequence=template_sequence,
|
536 |
-
mmcif_object=mmcif_object)
|
537 |
-
except SequenceNotInTemplateError:
|
538 |
-
# If PDB70 contains a different version of the template, we use the sequence
|
539 |
-
# from the mmcif_object.
|
540 |
-
chain_id = template_chain_id
|
541 |
-
warning = (
|
542 |
-
f'The exact sequence {template_sequence} was not found in '
|
543 |
-
f'{pdb_id}_{chain_id}. Realigning the template to the actual sequence.')
|
544 |
-
logging.warning(warning)
|
545 |
-
# This throws an exception if it fails to realign the hit.
|
546 |
-
seqres, mapping = _realign_pdb_template_to_query(
|
547 |
-
old_template_sequence=template_sequence,
|
548 |
-
template_chain_id=template_chain_id,
|
549 |
-
mmcif_object=mmcif_object,
|
550 |
-
old_mapping=mapping,
|
551 |
-
kalign_binary_path=kalign_binary_path)
|
552 |
-
logging.info('Sequence in %s_%s: %s successfully realigned to %s',
|
553 |
-
pdb_id, chain_id, template_sequence, seqres)
|
554 |
-
# The template sequence changed.
|
555 |
-
template_sequence = seqres
|
556 |
-
# No mapping offset, the query is aligned to the actual sequence.
|
557 |
-
mapping_offset = 0
|
558 |
-
|
559 |
-
try:
|
560 |
-
# Essentially set to infinity - we don't want to reject templates unless
|
561 |
-
# they're really really bad.
|
562 |
-
all_atom_positions, all_atom_mask = _get_atom_positions(
|
563 |
-
mmcif_object, chain_id, max_ca_ca_distance=150.0)
|
564 |
-
except (CaDistanceError, KeyError) as ex:
|
565 |
-
raise NoAtomDataInTemplateError(
|
566 |
-
'Could not get atom data (%s_%s): %s' % (pdb_id, chain_id, str(ex))
|
567 |
-
) from ex
|
568 |
-
|
569 |
-
all_atom_positions = np.split(all_atom_positions, all_atom_positions.shape[0])
|
570 |
-
all_atom_masks = np.split(all_atom_mask, all_atom_mask.shape[0])
|
571 |
-
|
572 |
-
output_templates_sequence = []
|
573 |
-
templates_all_atom_positions = []
|
574 |
-
templates_all_atom_masks = []
|
575 |
-
|
576 |
-
for _ in query_sequence:
|
577 |
-
# Residues in the query_sequence that are not in the template_sequence:
|
578 |
-
templates_all_atom_positions.append(
|
579 |
-
np.zeros((residue_constants.atom_type_num, 3)))
|
580 |
-
templates_all_atom_masks.append(np.zeros(residue_constants.atom_type_num))
|
581 |
-
output_templates_sequence.append('-')
|
582 |
-
|
583 |
-
for k, v in mapping.items():
|
584 |
-
template_index = v + mapping_offset
|
585 |
-
templates_all_atom_positions[k] = all_atom_positions[template_index][0]
|
586 |
-
templates_all_atom_masks[k] = all_atom_masks[template_index][0]
|
587 |
-
output_templates_sequence[k] = template_sequence[v]
|
588 |
-
|
589 |
-
# Alanine (AA with the lowest number of atoms) has 5 atoms (C, CA, CB, N, O).
|
590 |
-
if np.sum(templates_all_atom_masks) < 5:
|
591 |
-
raise TemplateAtomMaskAllZerosError(
|
592 |
-
'Template all atom mask was all zeros: %s_%s. Residue range: %d-%d' %
|
593 |
-
(pdb_id, chain_id, min(mapping.values()) + mapping_offset,
|
594 |
-
max(mapping.values()) + mapping_offset))
|
595 |
-
|
596 |
-
output_templates_sequence = ''.join(output_templates_sequence)
|
597 |
-
|
598 |
-
templates_aatype = residue_constants.sequence_to_onehot(
|
599 |
-
output_templates_sequence, residue_constants.HHBLITS_AA_TO_ID)
|
600 |
-
|
601 |
-
return (
|
602 |
-
{
|
603 |
-
'template_all_atom_positions': np.array(templates_all_atom_positions),
|
604 |
-
'template_all_atom_masks': np.array(templates_all_atom_masks),
|
605 |
-
'template_sequence': output_templates_sequence.encode(),
|
606 |
-
'template_aatype': np.array(templates_aatype),
|
607 |
-
'template_domain_names': f'{pdb_id.lower()}_{chain_id}'.encode(),
|
608 |
-
},
|
609 |
-
warning)
|
610 |
-
|
611 |
-
|
612 |
-
def _build_query_to_hit_index_mapping(
|
613 |
-
hit_query_sequence: str,
|
614 |
-
hit_sequence: str,
|
615 |
-
indices_hit: Sequence[int],
|
616 |
-
indices_query: Sequence[int],
|
617 |
-
original_query_sequence: str) -> Mapping[int, int]:
|
618 |
-
"""Gets mapping from indices in original query sequence to indices in the hit.
|
619 |
-
|
620 |
-
hit_query_sequence and hit_sequence are two aligned sequences containing gap
|
621 |
-
characters. hit_query_sequence contains only the part of the original query
|
622 |
-
sequence that matched the hit. When interpreting the indices from the .hhr, we
|
623 |
-
need to correct for this to recover a mapping from original query sequence to
|
624 |
-
the hit sequence.
|
625 |
-
|
626 |
-
Args:
|
627 |
-
hit_query_sequence: The portion of the query sequence that is in the .hhr
|
628 |
-
hit
|
629 |
-
hit_sequence: The portion of the hit sequence that is in the .hhr
|
630 |
-
indices_hit: The indices for each aminoacid relative to the hit sequence
|
631 |
-
indices_query: The indices for each aminoacid relative to the original query
|
632 |
-
sequence
|
633 |
-
original_query_sequence: String describing the original query sequence.
|
634 |
-
|
635 |
-
Returns:
|
636 |
-
Dictionary with indices in the original query sequence as keys and indices
|
637 |
-
in the hit sequence as values.
|
638 |
-
"""
|
639 |
-
# If the hit is empty (no aligned residues), return empty mapping
|
640 |
-
if not hit_query_sequence:
|
641 |
-
return {}
|
642 |
-
|
643 |
-
# Remove gaps and find the offset of hit.query relative to original query.
|
644 |
-
hhsearch_query_sequence = hit_query_sequence.replace('-', '')
|
645 |
-
hit_sequence = hit_sequence.replace('-', '')
|
646 |
-
hhsearch_query_offset = original_query_sequence.find(hhsearch_query_sequence)
|
647 |
-
|
648 |
-
# Index of -1 used for gap characters. Subtract the min index ignoring gaps.
|
649 |
-
min_idx = min(x for x in indices_hit if x > -1)
|
650 |
-
fixed_indices_hit = [
|
651 |
-
x - min_idx if x > -1 else -1 for x in indices_hit
|
652 |
-
]
|
653 |
-
|
654 |
-
min_idx = min(x for x in indices_query if x > -1)
|
655 |
-
fixed_indices_query = [x - min_idx if x > -1 else -1 for x in indices_query]
|
656 |
-
|
657 |
-
# Zip the corrected indices, ignore case where both seqs have gap characters.
|
658 |
-
mapping = {}
|
659 |
-
for q_i, q_t in zip(fixed_indices_query, fixed_indices_hit):
|
660 |
-
if q_t != -1 and q_i != -1:
|
661 |
-
if (q_t >= len(hit_sequence) or
|
662 |
-
q_i + hhsearch_query_offset >= len(original_query_sequence)):
|
663 |
-
continue
|
664 |
-
mapping[q_i + hhsearch_query_offset] = q_t
|
665 |
-
|
666 |
-
return mapping
|
667 |
-
|
668 |
-
|
669 |
-
@dataclasses.dataclass(frozen=True)
|
670 |
-
class SingleHitResult:
|
671 |
-
features: Optional[Mapping[str, Any]]
|
672 |
-
error: Optional[str]
|
673 |
-
warning: Optional[str]
|
674 |
-
|
675 |
-
|
676 |
-
def _process_single_hit(
|
677 |
-
query_sequence: str,
|
678 |
-
query_pdb_code: Optional[str],
|
679 |
-
hit: parsers.TemplateHit,
|
680 |
-
mmcif_dir: str,
|
681 |
-
max_template_date: datetime.datetime,
|
682 |
-
release_dates: Mapping[str, datetime.datetime],
|
683 |
-
obsolete_pdbs: Mapping[str, Optional[str]],
|
684 |
-
kalign_binary_path: str,
|
685 |
-
strict_error_check: bool = False) -> SingleHitResult:
|
686 |
-
"""Tries to extract template features from a single HHSearch hit."""
|
687 |
-
# Fail hard if we can't get the PDB ID and chain name from the hit.
|
688 |
-
hit_pdb_code, hit_chain_id = _get_pdb_id_and_chain(hit)
|
689 |
-
|
690 |
-
# This hit has been removed (obsoleted) from PDB, skip it.
|
691 |
-
if hit_pdb_code in obsolete_pdbs and obsolete_pdbs[hit_pdb_code] is None:
|
692 |
-
return SingleHitResult(
|
693 |
-
features=None, error=None, warning=f'Hit {hit_pdb_code} is obsolete.')
|
694 |
-
|
695 |
-
if hit_pdb_code not in release_dates:
|
696 |
-
if hit_pdb_code in obsolete_pdbs:
|
697 |
-
hit_pdb_code = obsolete_pdbs[hit_pdb_code]
|
698 |
-
|
699 |
-
# Pass hit_pdb_code since it might have changed due to the pdb being obsolete.
|
700 |
-
try:
|
701 |
-
_assess_hhsearch_hit(
|
702 |
-
hit=hit,
|
703 |
-
hit_pdb_code=hit_pdb_code,
|
704 |
-
query_sequence=query_sequence,
|
705 |
-
query_pdb_code=query_pdb_code,
|
706 |
-
release_dates=release_dates,
|
707 |
-
release_date_cutoff=max_template_date)
|
708 |
-
except PrefilterError as e:
|
709 |
-
msg = f'hit {hit_pdb_code}_{hit_chain_id} did not pass prefilter: {str(e)}'
|
710 |
-
logging.info('%s: %s', query_pdb_code, msg)
|
711 |
-
if strict_error_check and isinstance(
|
712 |
-
e, (DateError, PdbIdError, DuplicateError)):
|
713 |
-
# In strict mode we treat some prefilter cases as errors.
|
714 |
-
return SingleHitResult(features=None, error=msg, warning=None)
|
715 |
-
|
716 |
-
return SingleHitResult(features=None, error=None, warning=None)
|
717 |
-
|
718 |
-
mapping = _build_query_to_hit_index_mapping(
|
719 |
-
hit.query, hit.hit_sequence, hit.indices_hit, hit.indices_query,
|
720 |
-
query_sequence)
|
721 |
-
|
722 |
-
# The mapping is from the query to the actual hit sequence, so we need to
|
723 |
-
# remove gaps (which regardless have a missing confidence score).
|
724 |
-
template_sequence = hit.hit_sequence.replace('-', '')
|
725 |
-
|
726 |
-
cif_path = os.path.join(mmcif_dir, hit_pdb_code + '.cif')
|
727 |
-
logging.info('Reading PDB entry from %s. Query: %s, template: %s',
|
728 |
-
cif_path, query_sequence, template_sequence)
|
729 |
-
# Fail if we can't find the mmCIF file.
|
730 |
-
with open(cif_path, 'r') as cif_file:
|
731 |
-
cif_string = cif_file.read()
|
732 |
-
|
733 |
-
parsing_result = mmcif_parsing.parse(
|
734 |
-
file_id=hit_pdb_code, mmcif_string=cif_string)
|
735 |
-
|
736 |
-
if parsing_result.mmcif_object is not None:
|
737 |
-
hit_release_date = datetime.datetime.strptime(
|
738 |
-
parsing_result.mmcif_object.header['release_date'], '%Y-%m-%d')
|
739 |
-
if hit_release_date > max_template_date:
|
740 |
-
error = ('Template %s date (%s) > max template date (%s).' %
|
741 |
-
(hit_pdb_code, hit_release_date, max_template_date))
|
742 |
-
if strict_error_check:
|
743 |
-
return SingleHitResult(features=None, error=error, warning=None)
|
744 |
-
else:
|
745 |
-
logging.warning(error)
|
746 |
-
return SingleHitResult(features=None, error=None, warning=None)
|
747 |
-
|
748 |
-
try:
|
749 |
-
features, realign_warning = _extract_template_features(
|
750 |
-
mmcif_object=parsing_result.mmcif_object,
|
751 |
-
pdb_id=hit_pdb_code,
|
752 |
-
mapping=mapping,
|
753 |
-
template_sequence=template_sequence,
|
754 |
-
query_sequence=query_sequence,
|
755 |
-
template_chain_id=hit_chain_id,
|
756 |
-
kalign_binary_path=kalign_binary_path)
|
757 |
-
features['template_sum_probs'] = [hit.sum_probs]
|
758 |
-
|
759 |
-
# It is possible there were some errors when parsing the other chains in the
|
760 |
-
# mmCIF file, but the template features for the chain we want were still
|
761 |
-
# computed. In such case the mmCIF parsing errors are not relevant.
|
762 |
-
return SingleHitResult(
|
763 |
-
features=features, error=None, warning=realign_warning)
|
764 |
-
except (NoChainsError, NoAtomDataInTemplateError,
|
765 |
-
TemplateAtomMaskAllZerosError) as e:
|
766 |
-
# These 3 errors indicate missing mmCIF experimental data rather than a
|
767 |
-
# problem with the template search, so turn them into warnings.
|
768 |
-
warning = ('%s_%s (sum_probs: %.2f, rank: %d): feature extracting errors: '
|
769 |
-
'%s, mmCIF parsing errors: %s'
|
770 |
-
% (hit_pdb_code, hit_chain_id, hit.sum_probs, hit.index,
|
771 |
-
str(e), parsing_result.errors))
|
772 |
-
if strict_error_check:
|
773 |
-
return SingleHitResult(features=None, error=warning, warning=None)
|
774 |
-
else:
|
775 |
-
return SingleHitResult(features=None, error=None, warning=warning)
|
776 |
-
except Error as e:
|
777 |
-
error = ('%s_%s (sum_probs: %.2f, rank: %d): feature extracting errors: '
|
778 |
-
'%s, mmCIF parsing errors: %s'
|
779 |
-
% (hit_pdb_code, hit_chain_id, hit.sum_probs, hit.index,
|
780 |
-
str(e), parsing_result.errors))
|
781 |
-
return SingleHitResult(features=None, error=error, warning=None)
|
782 |
-
|
783 |
-
|
784 |
-
@dataclasses.dataclass(frozen=True)
|
785 |
-
class TemplateSearchResult:
|
786 |
-
features: Mapping[str, Any]
|
787 |
-
errors: Sequence[str]
|
788 |
-
warnings: Sequence[str]
|
789 |
-
|
790 |
-
|
791 |
-
class TemplateHitFeaturizer:
|
792 |
-
"""A class for turning hhr hits to template features."""
|
793 |
-
|
794 |
-
def __init__(
|
795 |
-
self,
|
796 |
-
mmcif_dir: str,
|
797 |
-
max_template_date: str,
|
798 |
-
max_hits: int,
|
799 |
-
kalign_binary_path: str,
|
800 |
-
release_dates_path: Optional[str],
|
801 |
-
obsolete_pdbs_path: Optional[str],
|
802 |
-
strict_error_check: bool = False):
|
803 |
-
"""Initializes the Template Search.
|
804 |
-
|
805 |
-
Args:
|
806 |
-
mmcif_dir: Path to a directory with mmCIF structures. Once a template ID
|
807 |
-
is found by HHSearch, this directory is used to retrieve the template
|
808 |
-
data.
|
809 |
-
max_template_date: The maximum date permitted for template structures. No
|
810 |
-
template with date higher than this date will be returned. In ISO8601
|
811 |
-
date format, YYYY-MM-DD.
|
812 |
-
max_hits: The maximum number of templates that will be returned.
|
813 |
-
kalign_binary_path: The path to a kalign executable used for template
|
814 |
-
realignment.
|
815 |
-
release_dates_path: An optional path to a file with a mapping from PDB IDs
|
816 |
-
to their release dates. Thanks to this we don't have to redundantly
|
817 |
-
parse mmCIF files to get that information.
|
818 |
-
obsolete_pdbs_path: An optional path to a file containing a mapping from
|
819 |
-
obsolete PDB IDs to the PDB IDs of their replacements.
|
820 |
-
strict_error_check: If True, then the following will be treated as errors:
|
821 |
-
* If any template date is after the max_template_date.
|
822 |
-
* If any template has identical PDB ID to the query.
|
823 |
-
* If any template is a duplicate of the query.
|
824 |
-
* Any feature computation errors.
|
825 |
-
"""
|
826 |
-
self._mmcif_dir = mmcif_dir
|
827 |
-
if not glob.glob(os.path.join(self._mmcif_dir, '*.cif')):
|
828 |
-
logging.error('Could not find CIFs in %s', self._mmcif_dir)
|
829 |
-
raise ValueError(f'Could not find CIFs in {self._mmcif_dir}')
|
830 |
-
|
831 |
-
try:
|
832 |
-
self._max_template_date = datetime.datetime.strptime(
|
833 |
-
max_template_date, '%Y-%m-%d')
|
834 |
-
except ValueError:
|
835 |
-
raise ValueError(
|
836 |
-
'max_template_date must be set and have format YYYY-MM-DD.')
|
837 |
-
self._max_hits = max_hits
|
838 |
-
self._kalign_binary_path = kalign_binary_path
|
839 |
-
self._strict_error_check = strict_error_check
|
840 |
-
|
841 |
-
if release_dates_path:
|
842 |
-
logging.info('Using precomputed release dates %s.', release_dates_path)
|
843 |
-
self._release_dates = _parse_release_dates(release_dates_path)
|
844 |
-
else:
|
845 |
-
self._release_dates = {}
|
846 |
-
|
847 |
-
if obsolete_pdbs_path:
|
848 |
-
logging.info('Using precomputed obsolete pdbs %s.', obsolete_pdbs_path)
|
849 |
-
self._obsolete_pdbs = _parse_obsolete(obsolete_pdbs_path)
|
850 |
-
else:
|
851 |
-
self._obsolete_pdbs = {}
|
852 |
-
|
853 |
-
def get_templates(
|
854 |
-
self,
|
855 |
-
query_sequence: str,
|
856 |
-
query_pdb_code: Optional[str],
|
857 |
-
query_release_date: Optional[datetime.datetime],
|
858 |
-
hits: Sequence[parsers.TemplateHit]) -> TemplateSearchResult:
|
859 |
-
"""Computes the templates for given query sequence (more details above)."""
|
860 |
-
logging.info('Searching for template for: %s', query_pdb_code)
|
861 |
-
|
862 |
-
template_features = {}
|
863 |
-
for template_feature_name in TEMPLATE_FEATURES:
|
864 |
-
template_features[template_feature_name] = []
|
865 |
-
|
866 |
-
# Always use a max_template_date. Set to query_release_date minus 60 days
|
867 |
-
# if that's earlier.
|
868 |
-
template_cutoff_date = self._max_template_date
|
869 |
-
if query_release_date:
|
870 |
-
delta = datetime.timedelta(days=60)
|
871 |
-
if query_release_date - delta < template_cutoff_date:
|
872 |
-
template_cutoff_date = query_release_date - delta
|
873 |
-
assert template_cutoff_date < query_release_date
|
874 |
-
assert template_cutoff_date <= self._max_template_date
|
875 |
-
|
876 |
-
num_hits = 0
|
877 |
-
errors = []
|
878 |
-
warnings = []
|
879 |
-
|
880 |
-
for hit in sorted(hits, key=lambda x: x.sum_probs, reverse=True):
|
881 |
-
# We got all the templates we wanted, stop processing hits.
|
882 |
-
if num_hits >= self._max_hits:
|
883 |
-
break
|
884 |
-
|
885 |
-
result = _process_single_hit(
|
886 |
-
query_sequence=query_sequence,
|
887 |
-
query_pdb_code=query_pdb_code,
|
888 |
-
hit=hit,
|
889 |
-
mmcif_dir=self._mmcif_dir,
|
890 |
-
max_template_date=template_cutoff_date,
|
891 |
-
release_dates=self._release_dates,
|
892 |
-
obsolete_pdbs=self._obsolete_pdbs,
|
893 |
-
strict_error_check=self._strict_error_check,
|
894 |
-
kalign_binary_path=self._kalign_binary_path)
|
895 |
-
|
896 |
-
if result.error:
|
897 |
-
errors.append(result.error)
|
898 |
-
|
899 |
-
# There could be an error even if there are some results, e.g. thrown by
|
900 |
-
# other unparsable chains in the same mmCIF file.
|
901 |
-
if result.warning:
|
902 |
-
warnings.append(result.warning)
|
903 |
-
|
904 |
-
if result.features is None:
|
905 |
-
logging.info('Skipped invalid hit %s, error: %s, warning: %s',
|
906 |
-
hit.name, result.error, result.warning)
|
907 |
-
else:
|
908 |
-
# Increment the hit counter, since we got features out of this hit.
|
909 |
-
num_hits += 1
|
910 |
-
for k in template_features:
|
911 |
-
template_features[k].append(result.features[k])
|
912 |
-
|
913 |
-
for name in template_features:
|
914 |
-
if num_hits > 0:
|
915 |
-
template_features[name] = np.stack(
|
916 |
-
template_features[name], axis=0).astype(TEMPLATE_FEATURES[name])
|
917 |
-
else:
|
918 |
-
# Make sure the feature has correct dtype even if empty.
|
919 |
-
template_features[name] = np.array([], dtype=TEMPLATE_FEATURES[name])
|
920 |
-
|
921 |
-
return TemplateSearchResult(
|
922 |
-
features=template_features, errors=errors, warnings=warnings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/data/tools/__init__.py
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""Python wrappers for third party tools."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alphafold/alphafold/data/tools/__pycache__/__init__.cpython-36.pyc
DELETED
Binary file (202 Bytes)
|
|
alphafold/alphafold/data/tools/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (219 Bytes)
|
|
alphafold/alphafold/data/tools/__pycache__/hhblits.cpython-36.pyc
DELETED
Binary file (4.44 kB)
|
|
alphafold/alphafold/data/tools/__pycache__/hhblits.cpython-38.pyc
DELETED
Binary file (4.51 kB)
|
|
alphafold/alphafold/data/tools/__pycache__/hhsearch.cpython-36.pyc
DELETED
Binary file (2.52 kB)
|
|
alphafold/alphafold/data/tools/__pycache__/hhsearch.cpython-38.pyc
DELETED
Binary file (2.58 kB)
|
|
alphafold/alphafold/data/tools/__pycache__/jackhmmer.cpython-36.pyc
DELETED
Binary file (5.23 kB)
|
|
alphafold/alphafold/data/tools/__pycache__/jackhmmer.cpython-38.pyc
DELETED
Binary file (5.34 kB)
|
|
alphafold/alphafold/data/tools/__pycache__/kalign.cpython-36.pyc
DELETED
Binary file (3.04 kB)
|
|
alphafold/alphafold/data/tools/__pycache__/kalign.cpython-38.pyc
DELETED
Binary file (3.09 kB)
|
|
alphafold/alphafold/data/tools/__pycache__/utils.cpython-36.pyc
DELETED
Binary file (929 Bytes)
|
|
alphafold/alphafold/data/tools/__pycache__/utils.cpython-38.pyc
DELETED
Binary file (954 Bytes)
|
|
alphafold/alphafold/data/tools/hhblits.py
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
# Copyright 2021 DeepMind Technologies Limited
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Library to run HHblits from Python."""
|
16 |
-
|
17 |
-
import glob
|
18 |
-
import os
|
19 |
-
import subprocess
|
20 |
-
from typing import Any, Mapping, Optional, Sequence
|
21 |
-
|
22 |
-
from absl import logging
|
23 |
-
from alphafold.data.tools import utils
|
24 |
-
# Internal import (7716).
|
25 |
-
|
26 |
-
|
27 |
-
_HHBLITS_DEFAULT_P = 20
|
28 |
-
_HHBLITS_DEFAULT_Z = 500
|
29 |
-
|
30 |
-
|
31 |
-
class HHBlits:
|
32 |
-
"""Python wrapper of the HHblits binary."""
|
33 |
-
|
34 |
-
def __init__(self,
|
35 |
-
*,
|
36 |
-
binary_path: str,
|
37 |
-
databases: Sequence[str],
|
38 |
-
n_cpu: int = 4,
|
39 |
-
n_iter: int = 3,
|
40 |
-
e_value: float = 0.001,
|
41 |
-
maxseq: int = 1_000_000,
|
42 |
-
realign_max: int = 100_000,
|
43 |
-
maxfilt: int = 100_000,
|
44 |
-
min_prefilter_hits: int = 1000,
|
45 |
-
all_seqs: bool = False,
|
46 |
-
alt: Optional[int] = None,
|
47 |
-
p: int = _HHBLITS_DEFAULT_P,
|
48 |
-
z: int = _HHBLITS_DEFAULT_Z):
|
49 |
-
"""Initializes the Python HHblits wrapper.
|
50 |
-
|
51 |
-
Args:
|
52 |
-
binary_path: The path to the HHblits executable.
|
53 |
-
databases: A sequence of HHblits database paths. This should be the
|
54 |
-
common prefix for the database files (i.e. up to but not including
|
55 |
-
_hhm.ffindex etc.)
|
56 |
-
n_cpu: The number of CPUs to give HHblits.
|
57 |
-
n_iter: The number of HHblits iterations.
|
58 |
-
e_value: The E-value, see HHblits docs for more details.
|
59 |
-
maxseq: The maximum number of rows in an input alignment. Note that this
|
60 |
-
parameter is only supported in HHBlits version 3.1 and higher.
|
61 |
-
realign_max: Max number of HMM-HMM hits to realign. HHblits default: 500.
|
62 |
-
maxfilt: Max number of hits allowed to pass the 2nd prefilter.
|
63 |
-
HHblits default: 20000.
|
64 |
-
min_prefilter_hits: Min number of hits to pass prefilter.
|
65 |
-
HHblits default: 100.
|
66 |
-
all_seqs: Return all sequences in the MSA / Do not filter the result MSA.
|
67 |
-
HHblits default: False.
|
68 |
-
alt: Show up to this many alternative alignments.
|
69 |
-
p: Minimum Prob for a hit to be included in the output hhr file.
|
70 |
-
HHblits default: 20.
|
71 |
-
z: Hard cap on number of hits reported in the hhr file.
|
72 |
-
HHblits default: 500. NB: The relevant HHblits flag is -Z not -z.
|
73 |
-
|
74 |
-
Raises:
|
75 |
-
RuntimeError: If HHblits binary not found within the path.
|
76 |
-
"""
|
77 |
-
self.binary_path = binary_path
|
78 |
-
self.databases = databases
|
79 |
-
|
80 |
-
for database_path in self.databases:
|
81 |
-
if not glob.glob(database_path + '_*'):
|
82 |
-
logging.error('Could not find HHBlits database %s', database_path)
|
83 |
-
raise ValueError(f'Could not find HHBlits database {database_path}')
|
84 |
-
|
85 |
-
self.n_cpu = n_cpu
|
86 |
-
self.n_iter = n_iter
|
87 |
-
self.e_value = e_value
|
88 |
-
self.maxseq = maxseq
|
89 |
-
self.realign_max = realign_max
|
90 |
-
self.maxfilt = maxfilt
|
91 |
-
self.min_prefilter_hits = min_prefilter_hits
|
92 |
-
self.all_seqs = all_seqs
|
93 |
-
self.alt = alt
|
94 |
-
self.p = p
|
95 |
-
self.z = z
|
96 |
-
|
97 |
-
def query(self, input_fasta_path: str) -> Mapping[str, Any]:
|
98 |
-
"""Queries the database using HHblits."""
|
99 |
-
with utils.tmpdir_manager(base_dir='/tmp') as query_tmp_dir:
|
100 |
-
a3m_path = os.path.join(query_tmp_dir, 'output.a3m')
|
101 |
-
|
102 |
-
db_cmd = []
|
103 |
-
for db_path in self.databases:
|
104 |
-
db_cmd.append('-d')
|
105 |
-
db_cmd.append(db_path)
|
106 |
-
cmd = [
|
107 |
-
self.binary_path,
|
108 |
-
'-i', input_fasta_path,
|
109 |
-
'-cpu', str(self.n_cpu),
|
110 |
-
'-oa3m', a3m_path,
|
111 |
-
'-o', '/dev/null',
|
112 |
-
'-n', str(self.n_iter),
|
113 |
-
'-e', str(self.e_value),
|
114 |
-
'-maxseq', str(self.maxseq),
|
115 |
-
'-realign_max', str(self.realign_max),
|
116 |
-
'-maxfilt', str(self.maxfilt),
|
117 |
-
'-min_prefilter_hits', str(self.min_prefilter_hits)]
|
118 |
-
if self.all_seqs:
|
119 |
-
cmd += ['-all']
|
120 |
-
if self.alt:
|
121 |
-
cmd += ['-alt', str(self.alt)]
|
122 |
-
if self.p != _HHBLITS_DEFAULT_P:
|
123 |
-
cmd += ['-p', str(self.p)]
|
124 |
-
if self.z != _HHBLITS_DEFAULT_Z:
|
125 |
-
cmd += ['-Z', str(self.z)]
|
126 |
-
cmd += db_cmd
|
127 |
-
|
128 |
-
logging.info('Launching subprocess "%s"', ' '.join(cmd))
|
129 |
-
process = subprocess.Popen(
|
130 |
-
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
131 |
-
|
132 |
-
with utils.timing('HHblits query'):
|
133 |
-
stdout, stderr = process.communicate()
|
134 |
-
retcode = process.wait()
|
135 |
-
|
136 |
-
if retcode:
|
137 |
-
# Logs have a 15k character limit, so log HHblits error line by line.
|
138 |
-
logging.error('HHblits failed. HHblits stderr begin:')
|
139 |
-
for error_line in stderr.decode('utf-8').splitlines():
|
140 |
-
if error_line.strip():
|
141 |
-
logging.error(error_line.strip())
|
142 |
-
logging.error('HHblits stderr end')
|
143 |
-
raise RuntimeError('HHblits failed\nstdout:\n%s\n\nstderr:\n%s\n' % (
|
144 |
-
stdout.decode('utf-8'), stderr[:500_000].decode('utf-8')))
|
145 |
-
|
146 |
-
with open(a3m_path) as f:
|
147 |
-
a3m = f.read()
|
148 |
-
|
149 |
-
raw_output = dict(
|
150 |
-
a3m=a3m,
|
151 |
-
output=stdout,
|
152 |
-
stderr=stderr,
|
153 |
-
n_iter=self.n_iter,
|
154 |
-
e_value=self.e_value)
|
155 |
-
return raw_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|