Spaces:
Running
on
T4
Running
on
T4
import tensorflow as tf | |
import tensorflow.keras.backend as K | |
import tensorflow.compat.v1 as tf1 | |
import tensorflow.compat.v1.keras.backend as K1 | |
tf1.disable_eager_execution() | |
from tensorflow.keras.models import Model | |
from tensorflow.keras.layers import Input, Conv2D, Activation, Dense, Lambda, Layer, Concatenate | |
def get_TrR_weights(filename): | |
weights = [np.squeeze(w) for w in np.load(filename, allow_pickle=True)] | |
# remove weights for beta-beta pairing | |
del weights[-4:-2] | |
return weights | |
def get_TrR(blocks=12, trainable=False, weights=None, name="TrR"): | |
ex = {"trainable":trainable} | |
# custom layer(s) | |
class PSSM(Layer): | |
# modified from MRF to only output tiled 1D features | |
def __init__(self, diag=0.4, use_entropy=False): | |
super(PSSM, self).__init__() | |
self.diag = diag | |
self.use_entropy = use_entropy | |
def call(self, inputs): | |
x,y = inputs | |
_,_,L,A = [tf.shape(y)[k] for k in range(4)] | |
with tf.name_scope('1d_features'): | |
# sequence | |
x_i = x[0,0,:,:20] | |
# pssm | |
f_i = y[0,0] | |
# entropy | |
if self.use_entropy: | |
h_i = K.sum(-f_i * K.log(f_i + 1e-8), axis=-1, keepdims=True) | |
else: | |
h_i = tf.zeros((L,1)) | |
# tile and combined 1D features | |
feat_1D = tf.concat([x_i,f_i,h_i], axis=-1) | |
feat_1D_tile_A = tf.tile(feat_1D[:,None,:], [1,L,1]) | |
feat_1D_tile_B = tf.tile(feat_1D[None,:,:], [L,1,1]) | |
with tf.name_scope('2d_features'): | |
ic = self.diag * tf.eye(L*A) | |
ic = tf.reshape(ic,(L,A,L,A)) | |
ic = tf.transpose(ic,(0,2,1,3)) | |
ic = tf.reshape(ic,(L,L,A*A)) | |
i0 = tf.zeros([L,L,1]) | |
feat_2D = tf.concat([ic,i0], axis=-1) | |
feat = tf.concat([feat_1D_tile_A, feat_1D_tile_B, feat_2D],axis=-1) | |
return tf.reshape(feat, [1,L,L,442+2*42]) | |
class instance_norm(Layer): | |
def __init__(self, axes=(1,2),trainable=True): | |
super(instance_norm, self).__init__() | |
self.axes = axes | |
self.trainable = trainable | |
def build(self, input_shape): | |
self.beta = self.add_weight(name='beta',shape=(input_shape[-1],), | |
initializer='zeros',trainable=self.trainable) | |
self.gamma = self.add_weight(name='gamma',shape=(input_shape[-1],), | |
initializer='ones',trainable=self.trainable) | |
def call(self, inputs): | |
mean, variance = tf.nn.moments(inputs, self.axes, keepdims=True) | |
return tf.nn.batch_normalization(inputs, mean, variance, self.beta, self.gamma, 1e-6) | |
## INPUT ## | |
inputs = Input((None,None,21),batch_size=1) | |
A = PSSM()([inputs,inputs]) | |
A = Dense(64, **ex)(A) | |
A = instance_norm(**ex)(A) | |
A = Activation("elu")(A) | |
## RESNET ## | |
def resnet(X, dilation=1, filters=64, win=3): | |
Y = Conv2D(filters, win, dilation_rate=dilation, padding='SAME', **ex)(X) | |
Y = instance_norm(**ex)(Y) | |
Y = Activation("elu")(Y) | |
Y = Conv2D(filters, win, dilation_rate=dilation, padding='SAME', **ex)(Y) | |
Y = instance_norm(**ex)(Y) | |
return Activation("elu")(X+Y) | |
for _ in range(blocks): | |
for dilation in [1,2,4,8,16]: | |
A = resnet(A, dilation) | |
A = resnet(A, dilation=1) | |
## OUTPUT ## | |
A_input = Input((None,None,64)) | |
p_theta = Dense(25, activation="softmax", **ex)(A_input) | |
p_phi = Dense(13, activation="softmax", **ex)(A_input) | |
A_sym = Lambda(lambda x: (x + tf.transpose(x,[0,2,1,3]))/2)(A_input) | |
p_dist = Dense(37, activation="softmax", **ex)(A_sym) | |
p_omega = Dense(25, activation="softmax", **ex)(A_sym) | |
A_model = Model(A_input,Concatenate()([p_theta,p_phi,p_dist,p_omega])) | |
## MODEL ## | |
model = Model(inputs, A_model(A),name=name) | |
if weights is not None: model.set_weights(weights) | |
return model | |
def get_TrR_model(L=None, exclude_theta=False, use_idx=False, use_bkg=False, models_path="models"): | |
def gather_idx(x): | |
idx = x[1][0] | |
return tf.gather(tf.gather(x[0],idx,axis=-2),idx,axis=-3) | |
def get_cce_loss(x, eps=1e-8, only_dist=False): | |
if only_dist: | |
true_x = split_feat(x[0])["dist"] | |
pred_x = split_feat(x[1])["dist"] | |
loss = -tf.reduce_mean(tf.reduce_sum(true_x*tf.math.log(pred_x + eps),-1),[-1,-2]) | |
return loss * 4 | |
elif exclude_theta: | |
true_x = split_feat(x[0]) | |
pred_x = split_feat(x[1]) | |
true_x = tf.concat([true_x[k] for k in ["phi","dist","omega"]],-1) | |
pred_x = tf.concat([pred_x[k] for k in ["phi","dist","omega"]],-1) | |
loss = -tf.reduce_mean(tf.reduce_sum(true_x*tf.math.log(pred_x + eps),-1),[-1,-2]) | |
return loss * 4/3 | |
else: | |
return -tf.reduce_mean(tf.reduce_sum(x[0]*tf.math.log(x[1] + eps),-1),[-1,-2]) | |
def get_bkg_loss(x, eps=1e-8): | |
return -tf.reduce_mean(tf.reduce_sum(x[1]*(tf.math.log(x[1]+eps)-tf.math.log(x[0]+eps)),-1),[-1,-2]) | |
def prep_seq(x_logits): | |
x_soft = tf.nn.softmax(x_logits,-1) | |
x_hard = tf.one_hot(tf.argmax(x_logits,-1),20) | |
x = tf.stop_gradient(x_hard - x_soft) + x_soft | |
x = tf.pad(x,[[0,0],[0,0],[0,1]]) | |
return x[None] | |
I_seq_logits = Input((L,20),name="seq_logits") | |
seq = Lambda(prep_seq,name="seq")(I_seq_logits) | |
I_true = Input((L,L,100),name="true") | |
if use_bkg: | |
I_bkg = Input((L,L,100),name="bkg") | |
if use_idx: | |
I_idx = Input((None,),dtype=tf.int32,name="idx") | |
I_idx_true = Input((None,),dtype=tf.int32,name="idx_true") | |
pred = [] | |
for nam in ["xaa","xab","xac","xad","xae"]: | |
print(nam) | |
TrR = get_TrR(weights=get_TrR_weights(f"{models_path}/model_{nam}.npy"),name=nam) | |
pred.append(TrR(seq)) | |
pred = sum(pred)/len(pred) | |
if use_idx: | |
pred_sub = Lambda(gather_idx, name="pred_sub")([pred,I_idx]) | |
true_sub = Lambda(gather_idx, name="true_sub")([I_true,I_idx_true]) | |
else: | |
pred_sub = pred | |
true_sub = I_true | |
cce_loss = Lambda(get_cce_loss,name="cce_loss")([true_sub, pred_sub]) | |
if use_bkg: | |
bkg_loss = Lambda(get_bkg_loss,name="bkg_loss")([I_bkg, pred]) | |
loss = Lambda(lambda x: x[0]+0.1*x[1])([cce_loss,bkg_loss]) | |
else: | |
loss = cce_loss | |
grad = Lambda(lambda x: tf.gradients(x[0],x[1]), name="grad")([loss,I_seq_logits]) | |
# setup model | |
inputs = [I_seq_logits, I_true] | |
outputs = [cce_loss] | |
if use_bkg: | |
inputs += [I_bkg] | |
outputs += [bkg_loss] | |
if use_idx: inputs += [I_idx, I_idx_true] | |
model = Model(intputs, outputs + [grad, pred], name="TrR_model") | |
TrR_model(seq, true, **kwargs): | |
i = [seq[None],true[None]] | |
if use_bkg: | |
i += [kwargs["bkg"][None]] | |
if use_idx: | |
pos_idx = kwargs["pos_idx"] | |
if "pos_idx_ref" not in kwargs or kwargs["pos_idx_ref"] is None: | |
pos_idx_ref = pos_idx | |
else: | |
pos_idx_ref = kwargs["pos_idx_ref"] | |
i += [pos_idx[None],pos_idx_ref[None]] | |
*o = model.predict(i) | |
r = {"cce_loss":o[0][0],"grad":o[-1][0],"pred":o[-2][0]} | |
if use_bkg: r["bkg_loss"] = o[1][0] | |
return r | |
return TrR_model | |