Upload 2 files
Browse files- app.py +146 -0
- requirements.txt +41 -0
app.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastai.vision.all import *
|
2 |
+
from io import BytesIO
|
3 |
+
import requests
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import time
|
9 |
+
import cv2
|
10 |
+
from numpy import random
|
11 |
+
from models.experimental import attempt_load
|
12 |
+
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
|
13 |
+
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
|
14 |
+
from utils.plots import plot_one_box
|
15 |
+
|
16 |
+
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
17 |
+
# Resize and pad image while meeting stride-multiple constraints
|
18 |
+
shape = img.shape[:2] # current shape [height, width]
|
19 |
+
if isinstance(new_shape, int):
|
20 |
+
new_shape = (new_shape, new_shape)
|
21 |
+
|
22 |
+
# Scale ratio (new / old)
|
23 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
24 |
+
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
25 |
+
r = min(r, 1.0)
|
26 |
+
|
27 |
+
# Compute padding
|
28 |
+
ratio = r, r # width, height ratios
|
29 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
30 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
31 |
+
if auto: # minimum rectangle
|
32 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
33 |
+
elif scaleFill: # stretch
|
34 |
+
dw, dh = 0.0, 0.0
|
35 |
+
new_unpad = (new_shape[1], new_shape[0])
|
36 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
37 |
+
|
38 |
+
dw /= 2 # divide padding into 2 sides
|
39 |
+
dh /= 2
|
40 |
+
|
41 |
+
if shape[::-1] != new_unpad: # resize
|
42 |
+
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
43 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
44 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
45 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
46 |
+
return img, ratio, (dw, dh)
|
47 |
+
|
48 |
+
def detect_modify(img0, model, conf=0.4, imgsz=640, conf_thres = 0.25, iou_thres=0.45):
|
49 |
+
st.image(img0, caption="Your image", use_column_width=True)
|
50 |
+
|
51 |
+
stride = int(model.stride.max()) # model stride
|
52 |
+
imgsz = check_img_size(imgsz, s=stride) # check img_size
|
53 |
+
|
54 |
+
# Padded resize
|
55 |
+
img0 = cv2.cvtColor(np.asarray(img0), cv2.COLOR_RGB2BGR)
|
56 |
+
img = letterbox(img0, imgsz, stride=stride)[0]
|
57 |
+
# Convert
|
58 |
+
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
59 |
+
img = np.ascontiguousarray(img)
|
60 |
+
|
61 |
+
|
62 |
+
# Get names and colors
|
63 |
+
names = model.module.names if hasattr(model, 'module') else model.names
|
64 |
+
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
65 |
+
|
66 |
+
# Run inference
|
67 |
+
old_img_w = old_img_h = imgsz
|
68 |
+
old_img_b = 1
|
69 |
+
|
70 |
+
t0 = time.time()
|
71 |
+
img = torch.from_numpy(img).to(device)
|
72 |
+
# img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
73 |
+
img = img/255.0
|
74 |
+
if img.ndimension() == 3:
|
75 |
+
img = img.unsqueeze(0)
|
76 |
+
|
77 |
+
# Inference
|
78 |
+
# t1 = time_synchronized()
|
79 |
+
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
|
80 |
+
pred = model(img)[0]
|
81 |
+
# t2 = time_synchronized()
|
82 |
+
|
83 |
+
# Apply NMS
|
84 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres)
|
85 |
+
# t3 = time_synchronized()
|
86 |
+
|
87 |
+
# Process detections
|
88 |
+
# for i, det in enumerate(pred): # detections per image
|
89 |
+
|
90 |
+
gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
91 |
+
|
92 |
+
det = pred[0]
|
93 |
+
if len(det):
|
94 |
+
# Rescale boxes from img_size to im0 size
|
95 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
|
96 |
+
|
97 |
+
# Print results
|
98 |
+
s = ''
|
99 |
+
for c in det[:, -1].unique():
|
100 |
+
n = (det[:, -1] == c).sum() # detections per class
|
101 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
102 |
+
|
103 |
+
# Write results
|
104 |
+
for *xyxy, conf, cls in reversed(det):
|
105 |
+
label = f'{names[int(cls)]} {conf:.2f}'
|
106 |
+
plot_one_box(xyxy, img0, label=label, color=colors[int(cls)], line_thickness=1)
|
107 |
+
|
108 |
+
f"""
|
109 |
+
### Prediction result:
|
110 |
+
"""
|
111 |
+
img0 = cv2.cvtColor(np.asarray(img0), cv2.COLOR_BGR2RGB)
|
112 |
+
st.image(img0, caption="Prediction Result", use_column_width=True)
|
113 |
+
|
114 |
+
#set paramters
|
115 |
+
weight_path = './yolov7.pt'
|
116 |
+
imgsz = 640
|
117 |
+
conf = 0.4
|
118 |
+
conf_thres = 0.25
|
119 |
+
iou_thres=0.45
|
120 |
+
device = torch.device("cpu")
|
121 |
+
path = "./"
|
122 |
+
|
123 |
+
# Load model
|
124 |
+
model = attempt_load(weight_path, map_location=torch.device('cpu')) # load FP32 model
|
125 |
+
|
126 |
+
"""
|
127 |
+
# YOLOv7
|
128 |
+
This is a object detection model for [Objects].
|
129 |
+
"""
|
130 |
+
option = st.radio("", ["Upload Image", "Image URL"])
|
131 |
+
|
132 |
+
if option == "Upload Image":
|
133 |
+
uploaded_file = st.file_uploader("Please upload an image.")
|
134 |
+
|
135 |
+
if uploaded_file is not None:
|
136 |
+
img = PILImage.create(uploaded_file)
|
137 |
+
detect_modify(img, model, conf=conf, imgsz=imgsz, conf_thres=conf_thres, iou_thres=iou_thres)
|
138 |
+
else:
|
139 |
+
url = st.text_input("Please input a url.")
|
140 |
+
if url != "":
|
141 |
+
try:
|
142 |
+
response = requests.get(url)
|
143 |
+
pil_img = PILImage.create(BytesIO(response.content))
|
144 |
+
detect_modify(pil_img, model, conf=conf, imgsz=imgsz, conf_thres=conf_thres, iou_thres=iou_thres)
|
145 |
+
except:
|
146 |
+
st.text("Problem reading image from", url)
|
requirements.txt
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Usage: pip install -r requirements.txt
|
2 |
+
fastbook
|
3 |
+
altair<5
|
4 |
+
|
5 |
+
# Base ----------------------------------------
|
6 |
+
matplotlib>=3.2.2
|
7 |
+
numpy>=1.18.5,<1.24.0
|
8 |
+
opencv-python>=4.1.1
|
9 |
+
Pillow>=7.1.2
|
10 |
+
PyYAML>=5.3.1
|
11 |
+
requests>=2.23.0
|
12 |
+
scipy>=1.4.1
|
13 |
+
torch>=1.7.0,!=1.12.0
|
14 |
+
torchvision>=0.8.1,!=0.13.0
|
15 |
+
tqdm>=4.41.0
|
16 |
+
protobuf<4.21.3
|
17 |
+
|
18 |
+
# Logging -------------------------------------
|
19 |
+
tensorboard>=2.4.1
|
20 |
+
# wandb
|
21 |
+
|
22 |
+
# Plotting ------------------------------------
|
23 |
+
pandas>=1.1.4
|
24 |
+
seaborn>=0.11.0
|
25 |
+
|
26 |
+
# Export --------------------------------------
|
27 |
+
# coremltools>=4.1 # CoreML export
|
28 |
+
# onnx>=1.9.0 # ONNX export
|
29 |
+
# onnx-simplifier>=0.3.6 # ONNX simplifier
|
30 |
+
# scikit-learn==0.19.2 # CoreML quantization
|
31 |
+
# tensorflow>=2.4.1 # TFLite export
|
32 |
+
# tensorflowjs>=3.9.0 # TF.js export
|
33 |
+
# openvino-dev # OpenVINO export
|
34 |
+
|
35 |
+
# Extras --------------------------------------
|
36 |
+
ipython # interactive notebook
|
37 |
+
psutil # system utilization
|
38 |
+
thop # FLOPs computation
|
39 |
+
# albumentations>=1.0.3
|
40 |
+
# pycocotools>=2.0 # COCO mAP
|
41 |
+
# roboflow
|