Spaces:
Runtime error
Runtime error
import gradio | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
import torch | |
model = AutoModelForSeq2SeqLM.from_pretrained("Jayyydyyy/m2m100_418m_tokipona") | |
tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M") | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
LANG_CODES = {"English": "en", "toki pona": "tl"} | |
def translate(text): | |
""" | |
Translate the text from source lang to target lang | |
""" | |
# src = LANG_CODES.get(src_lang) | |
# tgt = LANG_CODES.get(tgt_lang) | |
tokenizer.src_lang = "en" | |
tokenizer.tgt_lang = "tl" | |
ins = tokenizer(text, return_tensors="pt").to(device) | |
gen_args = { | |
"return_dict_in_generate": True, | |
"output_scores": True, | |
"output_hidden_states": True, | |
"length_penalty": 0.0, # don't encourage longer or shorter output, | |
"num_return_sequences": 1, | |
"num_beams": 1, | |
"forced_bos_token_id": tokenizer.lang_code_to_id["tl"], | |
} | |
outs = model.generate(**{**ins, **gen_args}) | |
output = tokenizer.batch_decode(outs.sequences, skip_special_tokens=True) | |
return "\n".join(output) | |
gradio_interface = gradio.Interface( | |
fn = translate, | |
inputs = "text", | |
outputs = "text" | |
) | |
gradio_interface.launch() | |