Spaces:
Runtime error
Runtime error
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
from scipy.special import softmax
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("armheb/DNA_bert_6")
|
6 |
+
model2 = AutoModelForSequenceClassification.from_pretrained("simecek/promoters_demo")
|
7 |
+
|
8 |
+
def kmers(s, k=6):
|
9 |
+
return [s[i:i + k] for i in range(0, len(s)-k+1)]
|
10 |
+
|
11 |
+
def tokenization(x):
|
12 |
+
return tokenizer(" ".join(kmers(x["seq"])), return_tensors="pt")
|
13 |
+
|
14 |
+
categories = ["not-promoter", "promoter"]
|
15 |
+
|
16 |
+
def is_promoter(DNAseq):
|
17 |
+
input = tokenization({"seq": DNAseq})
|
18 |
+
logits = model2(**input)['logits'].detach().numpy()
|
19 |
+
probs = softmax(logits, axis=1)[0]
|
20 |
+
probs = map(float, probs)
|
21 |
+
|
22 |
+
return dict(zip(categories, probs))
|
23 |
+
|
24 |
+
text = gr.inputs.Textbox(placeholder="Input DNA sequence", lines=5)
|
25 |
+
label = gr.outputs.Label(label = "Is it a promoter?")
|
26 |
+
|
27 |
+
intf = gr.Interface(fn=is_promoter, inputs=text, outputs=label)
|
28 |
+
|
29 |
+
intf.launch()
|