Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,12 @@
|
|
1 |
import json
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import gradio as gr
|
|
|
4 |
from PIL import Image
|
5 |
import safetensors.torch
|
6 |
import spaces
|
@@ -10,9 +16,53 @@ import torch
|
|
10 |
from torchvision.transforms import transforms
|
11 |
from torchvision.transforms import InterpolationMode
|
12 |
import torchvision.transforms.functional as TF
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
torch.set_grad_enabled(False)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
class Fit(torch.nn.Module):
|
17 |
def __init__(
|
18 |
self,
|
@@ -138,6 +188,8 @@ class GatedHead(torch.nn.Module):
|
|
138 |
model.head = GatedHead(min(model.head.weight.shape), 9083)
|
139 |
|
140 |
safetensors.torch.load_model(model, "JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors")
|
|
|
|
|
141 |
model.eval()
|
142 |
|
143 |
with open("tagger_tags.json", "r") as file:
|
@@ -149,11 +201,11 @@ for idx, tag in enumerate(allowed_tags):
|
|
149 |
|
150 |
sorted_tag_score = {}
|
151 |
|
152 |
-
@spaces.GPU(duration=
|
153 |
def run_classifier(image, threshold):
|
154 |
global sorted_tag_score
|
155 |
img = image.convert('RGBA')
|
156 |
-
tensor = transform(img).unsqueeze(0)
|
157 |
|
158 |
with torch.no_grad():
|
159 |
probits = model(tensor)[0]
|
@@ -177,6 +229,83 @@ def clear_image():
|
|
177 |
sorted_tag_score = {}
|
178 |
return "", {}
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
with gr.Blocks(css=".output-class { display: none; }") as demo:
|
181 |
gr.Markdown("""
|
182 |
## Joint Tagger Project: JTP-PILOT² Demo **BETA**
|
@@ -186,31 +315,43 @@ with gr.Blocks(css=".output-class { display: none; }") as demo:
|
|
186 |
|
187 |
Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
|
188 |
""")
|
189 |
-
with gr.
|
190 |
-
with gr.
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
demo.launch()
|
|
|
1 |
import json
|
2 |
+
import os
|
3 |
+
import zipfile
|
4 |
+
from io import BytesIO
|
5 |
+
from tempfile import NamedTemporaryFile
|
6 |
+
import tempfile
|
7 |
|
8 |
import gradio as gr
|
9 |
+
import pandas as pd
|
10 |
from PIL import Image
|
11 |
import safetensors.torch
|
12 |
import spaces
|
|
|
16 |
from torchvision.transforms import transforms
|
17 |
from torchvision.transforms import InterpolationMode
|
18 |
import torchvision.transforms.functional as TF
|
19 |
+
from torch.utils.data import Dataset, DataLoader
|
20 |
+
from typing import Callable
|
21 |
+
from functools import partial
|
22 |
+
import spaces.config
|
23 |
+
from spaces.zero.decorator import P, R
|
24 |
|
25 |
torch.set_grad_enabled(False)
|
26 |
|
27 |
+
def _dynGPU(
|
28 |
+
fn: Callable[P, R] | None, duration: Callable[P, int], min=30, max=300, step=10
|
29 |
+
) -> Callable[P, R]:
|
30 |
+
if not spaces.config.Config.zero_gpu:
|
31 |
+
return fn
|
32 |
+
|
33 |
+
funcs = [
|
34 |
+
(t, spaces.GPU(duration=t)(lambda *args, **kwargs: fn(*args, **kwargs)))
|
35 |
+
for t in range(min, max + 1, step)
|
36 |
+
]
|
37 |
+
|
38 |
+
def wrapper(*args, **kwargs):
|
39 |
+
requirement = duration(*args, **kwargs)
|
40 |
+
|
41 |
+
# find the function that satisfies the duration requirement
|
42 |
+
for t, func in funcs:
|
43 |
+
if t >= requirement:
|
44 |
+
gr.Info(f"Acquiring ZeroGPU for {t} seconds")
|
45 |
+
return func(*args, **kwargs)
|
46 |
+
|
47 |
+
# if no function is found, return the last one
|
48 |
+
gr.Info(f"Acquiring ZeroGPU for {funcs[-1][0]} seconds")
|
49 |
+
return funcs[-1][1](*args, **kwargs)
|
50 |
+
|
51 |
+
return wrapper
|
52 |
+
|
53 |
+
|
54 |
+
def dynGPU(
|
55 |
+
fn: Callable[P, R] | None = None,
|
56 |
+
duration: Callable[P, int] = lambda: 60,
|
57 |
+
min=30,
|
58 |
+
max=300,
|
59 |
+
step=10,
|
60 |
+
) -> Callable[P, R]:
|
61 |
+
if fn is None:
|
62 |
+
return partial(_dynGPU, duration=duration, min=min, max=max, step=step)
|
63 |
+
return _dynGPU(fn, duration, min, max, step)
|
64 |
+
|
65 |
+
|
66 |
class Fit(torch.nn.Module):
|
67 |
def __init__(
|
68 |
self,
|
|
|
188 |
model.head = GatedHead(min(model.head.weight.shape), 9083)
|
189 |
|
190 |
safetensors.torch.load_model(model, "JTP_PILOT2-2-e3-vit_so400m_patch14_siglip_384.safetensors")
|
191 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
192 |
+
model.to(device)
|
193 |
model.eval()
|
194 |
|
195 |
with open("tagger_tags.json", "r") as file:
|
|
|
201 |
|
202 |
sorted_tag_score = {}
|
203 |
|
204 |
+
@spaces.GPU(duration=6)
|
205 |
def run_classifier(image, threshold):
|
206 |
global sorted_tag_score
|
207 |
img = image.convert('RGBA')
|
208 |
+
tensor = transform(img).unsqueeze(0).to(device)
|
209 |
|
210 |
with torch.no_grad():
|
211 |
probits = model(tensor)[0]
|
|
|
229 |
sorted_tag_score = {}
|
230 |
return "", {}
|
231 |
|
232 |
+
class ImageDataset(Dataset):
|
233 |
+
def __init__(self, image_files, transform):
|
234 |
+
self.image_files = image_files
|
235 |
+
self.transform = transform
|
236 |
+
|
237 |
+
def __len__(self):
|
238 |
+
return len(self.image_files)
|
239 |
+
|
240 |
+
def __getitem__(self, idx):
|
241 |
+
img_path = self.image_files[idx]
|
242 |
+
img = Image.open(img_path).convert('RGB')
|
243 |
+
return self.transform(img), os.path.basename(img_path)
|
244 |
+
|
245 |
+
def measure_duration(images, threshold) -> int:
|
246 |
+
return ceil(len(images) / 64) * 9 + 3
|
247 |
+
|
248 |
+
@dynGPU(duration=measure_duration)
|
249 |
+
def process_images(images, threshold):
|
250 |
+
dataset = ImageDataset(images, transform)
|
251 |
+
|
252 |
+
dataloader = DataLoader(dataset, batch_size=64, num_workers=0, pin_memory=True, drop_last=False)
|
253 |
+
|
254 |
+
all_results = []
|
255 |
+
|
256 |
+
with torch.no_grad():
|
257 |
+
for batch, filenames in dataloader:
|
258 |
+
|
259 |
+
batch = batch.to(device)
|
260 |
+
with torch.no_grad():
|
261 |
+
logits = model(batch)
|
262 |
+
probabilities = torch.nn.functional.sigmoid(logits)
|
263 |
+
|
264 |
+
for i, prob in enumerate(probabilities):
|
265 |
+
indices = torch.where(prob > threshold)[0]
|
266 |
+
values = prob[indices]
|
267 |
+
|
268 |
+
temp = []
|
269 |
+
tag_score = dict()
|
270 |
+
for j in range(indices.size(0)):
|
271 |
+
temp.append([allowed_tags[indices[j]], values[j].item()])
|
272 |
+
tag_score[allowed_tags[indices[j]]] = values[j].item()
|
273 |
+
|
274 |
+
tags = ", ".join([t[0] for t in temp])
|
275 |
+
all_results.append((filenames[i], tags, tag_score))
|
276 |
+
|
277 |
+
return all_results
|
278 |
+
|
279 |
+
def is_valid_image(file_path):
|
280 |
+
try:
|
281 |
+
with Image.open(file_path) as img:
|
282 |
+
img.verify()
|
283 |
+
return True
|
284 |
+
except:
|
285 |
+
return False
|
286 |
+
|
287 |
+
def process_zip(zip_file, threshold):
|
288 |
+
if zip_file is None:
|
289 |
+
return None, None
|
290 |
+
|
291 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
292 |
+
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
|
293 |
+
zip_ref.extractall(temp_dir)
|
294 |
+
|
295 |
+
all_files = [os.path.join(temp_dir, f) for f in os.listdir(temp_dir)]
|
296 |
+
image_files = [f for f in all_files if is_valid_image(f)]
|
297 |
+
results = process_images(image_files, threshold)
|
298 |
+
|
299 |
+
temp_file = NamedTemporaryFile(delete=False, suffix=".zip")
|
300 |
+
with zipfile.ZipFile(temp_file, "w") as zip_ref:
|
301 |
+
for image_name, text_no_impl, _ in results:
|
302 |
+
with zip_ref.open(''.join(image_name.split('.')[:-1]) + ".txt", 'w') as file:
|
303 |
+
file.write(text_no_impl.encode())
|
304 |
+
temp_file.seek(0)
|
305 |
+
df = pd.DataFrame([(os.path.basename(f), t) for f, t, _ in results], columns=['Image', 'Tags'])
|
306 |
+
|
307 |
+
return temp_file.name, df
|
308 |
+
|
309 |
with gr.Blocks(css=".output-class { display: none; }") as demo:
|
310 |
gr.Markdown("""
|
311 |
## Joint Tagger Project: JTP-PILOT² Demo **BETA**
|
|
|
315 |
|
316 |
Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
|
317 |
""")
|
318 |
+
with gr.Tabs():
|
319 |
+
with gr.TabItem("Single Image"):
|
320 |
+
with gr.Row():
|
321 |
+
with gr.Column():
|
322 |
+
image_input = gr.Image(label="Source", sources=['upload'], type='pil', height=512, show_label=False)
|
323 |
+
threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
|
324 |
+
with gr.Column():
|
325 |
+
tag_string = gr.Textbox(label="Tag String")
|
326 |
+
label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False)
|
327 |
+
|
328 |
+
image_input.upload(
|
329 |
+
fn=run_classifier,
|
330 |
+
inputs=[image_input, threshold_slider],
|
331 |
+
outputs=[tag_string, label_box]
|
332 |
+
)
|
333 |
+
|
334 |
+
threshold_slider.input(
|
335 |
+
fn=create_tags,
|
336 |
+
inputs=[threshold_slider],
|
337 |
+
outputs=[tag_string, label_box]
|
338 |
+
)
|
339 |
+
|
340 |
+
with gr.TabItem("Multiple Images"):
|
341 |
+
with gr.Row():
|
342 |
+
with gr.Column():
|
343 |
+
zip_input = gr.File(label="Upload ZIP file", file_types=['.zip'])
|
344 |
+
multi_threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
|
345 |
+
process_button = gr.Button("Process Images")
|
346 |
+
with gr.Column():
|
347 |
+
zip_output = gr.File(label="Download Tagged Text Files (ZIP)")
|
348 |
+
dataframe_output = gr.Dataframe(label="Image Tags Summary")
|
349 |
+
|
350 |
+
process_button.click(
|
351 |
+
fn=process_zip,
|
352 |
+
inputs=[zip_input, multi_threshold_slider],
|
353 |
+
outputs=[zip_output, dataframe_output]
|
354 |
+
)
|
355 |
|
356 |
if __name__ == "__main__":
|
357 |
demo.launch()
|