Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update submission
Browse files- app.py +1 -31
- src/submission/check_validity.py +4 -4
- src/submission/submit.py +35 -27
app.py
CHANGED
@@ -148,43 +148,13 @@ with demo:
|
|
148 |
with gr.Row():
|
149 |
with gr.Column():
|
150 |
model_name_textbox = gr.Textbox(label="Model name")
|
151 |
-
|
152 |
-
model_type = gr.Dropdown(
|
153 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
154 |
-
label="Model type",
|
155 |
-
multiselect=False,
|
156 |
-
value=None,
|
157 |
-
interactive=True,
|
158 |
-
)
|
159 |
-
|
160 |
-
with gr.Column():
|
161 |
-
precision = gr.Dropdown(
|
162 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
163 |
-
label="Precision",
|
164 |
-
multiselect=False,
|
165 |
-
value="float16",
|
166 |
-
interactive=True,
|
167 |
-
)
|
168 |
-
weight_type = gr.Dropdown(
|
169 |
-
choices=[i.value.name for i in WeightType],
|
170 |
-
label="Weights type",
|
171 |
-
multiselect=False,
|
172 |
-
value="Original",
|
173 |
-
interactive=True,
|
174 |
-
)
|
175 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
176 |
-
|
177 |
submit_button = gr.Button("Submit Eval")
|
178 |
submission_result = gr.Markdown()
|
179 |
submit_button.click(
|
180 |
add_new_eval,
|
181 |
[
|
182 |
model_name_textbox,
|
183 |
-
base_model_name_textbox,
|
184 |
-
revision_name_textbox,
|
185 |
-
precision,
|
186 |
-
weight_type,
|
187 |
-
model_type,
|
188 |
],
|
189 |
submission_result,
|
190 |
)
|
|
|
148 |
with gr.Row():
|
149 |
with gr.Column():
|
150 |
model_name_textbox = gr.Textbox(label="Model name")
|
151 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
submit_button = gr.Button("Submit Eval")
|
153 |
submission_result = gr.Markdown()
|
154 |
submit_button.click(
|
155 |
add_new_eval,
|
156 |
[
|
157 |
model_name_textbox,
|
|
|
|
|
|
|
|
|
|
|
158 |
],
|
159 |
submission_result,
|
160 |
)
|
src/submission/check_validity.py
CHANGED
@@ -31,7 +31,7 @@ def check_model_card(repo_id: str) -> tuple[bool, str]:
|
|
31 |
|
32 |
return True, ""
|
33 |
|
34 |
-
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
35 |
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
36 |
try:
|
37 |
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
@@ -59,14 +59,14 @@ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_rem
|
|
59 |
return False, "was not found on hub!", None
|
60 |
|
61 |
|
62 |
-
def get_model_size(model_info: ModelInfo
|
63 |
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
64 |
try:
|
65 |
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
except (AttributeError, TypeError):
|
67 |
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
68 |
-
|
69 |
-
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
model_size = size_factor * model_size
|
71 |
return model_size
|
72 |
|
|
|
31 |
|
32 |
return True, ""
|
33 |
|
34 |
+
def is_model_on_hub(model_name: str, revision: str = "main", token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
35 |
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
36 |
try:
|
37 |
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
|
|
59 |
return False, "was not found on hub!", None
|
60 |
|
61 |
|
62 |
+
def get_model_size(model_info: ModelInfo): #, precision: str
|
63 |
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
64 |
try:
|
65 |
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
except (AttributeError, TypeError):
|
67 |
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
68 |
+
print("******* model size **********",model_size)
|
69 |
+
size_factor = 1#8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
model_size = size_factor * model_size
|
71 |
return model_size
|
72 |
|
src/submission/submit.py
CHANGED
@@ -17,11 +17,11 @@ USERS_TO_SUBMISSION_DATES = None
|
|
17 |
|
18 |
def add_new_eval(
|
19 |
model: str,
|
20 |
-
base_model: str,
|
21 |
-
revision: str,
|
22 |
-
precision: str,
|
23 |
-
weight_type: str,
|
24 |
-
model_type: str,
|
25 |
):
|
26 |
global REQUESTED_MODELS
|
27 |
global USERS_TO_SUBMISSION_DATES
|
@@ -34,9 +34,13 @@ def add_new_eval(
|
|
34 |
user_name = model.split("/")[0]
|
35 |
model_path = model.split("/")[1]
|
36 |
|
37 |
-
precision = precision.split(" ")[0]
|
38 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
39 |
|
|
|
|
|
|
|
|
|
40 |
if model_type is None or model_type == "":
|
41 |
return styled_error("Please select a model type.")
|
42 |
|
@@ -54,14 +58,14 @@ def add_new_eval(
|
|
54 |
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
55 |
if not model_on_hub:
|
56 |
return styled_error(f'Model "{model}" {error}')
|
57 |
-
|
58 |
# Is the model info correctly filled?
|
59 |
try:
|
60 |
-
model_info = API.model_info(repo_id=model
|
61 |
except Exception:
|
62 |
return styled_error("Could not get your model information. Please fill it up properly.")
|
63 |
|
64 |
-
model_size = get_model_size(model_info=model_info
|
65 |
|
66 |
if model_size>30:
|
67 |
return styled_error("Due to limited GPU availability, evaluations for models larger than 30B are currently not automated. Please open a ticket here so we do it manually for you. https://huggingface.co/spaces/silma-ai/Arabic-Broad-Leaderboard/discussions")
|
@@ -77,31 +81,32 @@ def add_new_eval(
|
|
77 |
return styled_error(error_msg)
|
78 |
|
79 |
# Seems good, creating the eval
|
80 |
-
print("
|
81 |
|
82 |
eval_entry = {
|
83 |
"model": model,
|
84 |
-
"
|
85 |
-
"
|
86 |
-
"
|
87 |
-
"
|
|
|
88 |
"status": "PENDING",
|
89 |
"submitted_time": current_time,
|
90 |
-
"model_type": model_type,
|
91 |
"likes": model_info.likes,
|
92 |
"params": model_size,
|
93 |
"license": license,
|
94 |
-
"private": False,
|
95 |
}
|
96 |
|
97 |
# Check for duplicate submission
|
98 |
-
if f"{model}_{revision}_{precision}
|
99 |
return styled_warning("This model has been already submitted.")
|
100 |
|
101 |
print("Creating eval file")
|
102 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
103 |
os.makedirs(OUT_DIR, exist_ok=True)
|
104 |
-
out_path = f"{OUT_DIR}/{model_path}
|
105 |
|
106 |
with open(out_path, "w") as f:
|
107 |
f.write(json.dumps(eval_entry))
|
@@ -109,8 +114,8 @@ def add_new_eval(
|
|
109 |
|
110 |
##update queue file
|
111 |
queue_file_path = "./eval_queue.json"
|
112 |
-
|
113 |
-
## download queue_file from repo using
|
114 |
queue_file = hf_hub_download(
|
115 |
filename=queue_file_path,
|
116 |
repo_id=QUEUE_REPO,
|
@@ -121,18 +126,24 @@ def add_new_eval(
|
|
121 |
|
122 |
with open(queue_file, "r") as f:
|
123 |
queue_data = json.load(f)
|
|
|
124 |
if len(queue_data) == 0:
|
125 |
queue_data = []
|
|
|
126 |
queue_data.append(eval_entry)
|
|
|
127 |
print(queue_data)
|
|
|
128 |
#with open(queue_file, "w") as f:
|
129 |
# json.dump(queue_data, f)
|
130 |
-
|
|
|
131 |
API.upload_file(
|
132 |
path_or_fileobj=json.dumps(queue_data, indent=2).encode("utf-8"),
|
133 |
path_in_repo=queue_file_path,
|
134 |
repo_id=QUEUE_REPO,
|
135 |
-
repo_type="space"
|
|
|
136 |
)
|
137 |
|
138 |
|
@@ -142,17 +153,14 @@ def add_new_eval(
|
|
142 |
path_in_repo=out_path,
|
143 |
repo_id=QUEUE_REPO,
|
144 |
repo_type="space",
|
145 |
-
commit_message=f"Add {model}
|
146 |
)
|
147 |
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
# Remove the local file
|
154 |
os.remove(out_path)
|
155 |
|
|
|
156 |
return styled_message(
|
157 |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an 15 minutes for the model to show in the PENDING list."
|
158 |
)
|
|
|
17 |
|
18 |
def add_new_eval(
|
19 |
model: str,
|
20 |
+
#base_model: str,
|
21 |
+
#revision: str,
|
22 |
+
#precision: str,
|
23 |
+
#weight_type: str,
|
24 |
+
#model_type: str,
|
25 |
):
|
26 |
global REQUESTED_MODELS
|
27 |
global USERS_TO_SUBMISSION_DATES
|
|
|
34 |
user_name = model.split("/")[0]
|
35 |
model_path = model.split("/")[1]
|
36 |
|
37 |
+
#precision = precision.split(" ")[0]
|
38 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
39 |
|
40 |
+
if not is_model_on_hub(model_name=model, token=TOKEN, test_tokenizer=True): #revision=revision
|
41 |
+
return styled_error("Model does not exist on HF Hub. Please select a valid model name.")
|
42 |
+
|
43 |
+
"""
|
44 |
if model_type is None or model_type == "":
|
45 |
return styled_error("Please select a model type.")
|
46 |
|
|
|
58 |
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
59 |
if not model_on_hub:
|
60 |
return styled_error(f'Model "{model}" {error}')
|
61 |
+
"""
|
62 |
# Is the model info correctly filled?
|
63 |
try:
|
64 |
+
model_info = API.model_info(repo_id=model)#, revision=revision
|
65 |
except Exception:
|
66 |
return styled_error("Could not get your model information. Please fill it up properly.")
|
67 |
|
68 |
+
model_size = get_model_size(model_info=model_info)#, precision=precision
|
69 |
|
70 |
if model_size>30:
|
71 |
return styled_error("Due to limited GPU availability, evaluations for models larger than 30B are currently not automated. Please open a ticket here so we do it manually for you. https://huggingface.co/spaces/silma-ai/Arabic-Broad-Leaderboard/discussions")
|
|
|
81 |
return styled_error(error_msg)
|
82 |
|
83 |
# Seems good, creating the eval
|
84 |
+
print("Preparing a new eval")
|
85 |
|
86 |
eval_entry = {
|
87 |
"model": model,
|
88 |
+
"model_sha": model_info.sha,
|
89 |
+
#"base_model": base_model,
|
90 |
+
#"revision": revision,
|
91 |
+
#"precision": precision,
|
92 |
+
#"weight_type": weight_type,
|
93 |
"status": "PENDING",
|
94 |
"submitted_time": current_time,
|
95 |
+
#"model_type": model_type,
|
96 |
"likes": model_info.likes,
|
97 |
"params": model_size,
|
98 |
"license": license,
|
99 |
+
#"private": False,
|
100 |
}
|
101 |
|
102 |
# Check for duplicate submission
|
103 |
+
if f"{model}" in REQUESTED_MODELS: #_{revision}_{precision}
|
104 |
return styled_warning("This model has been already submitted.")
|
105 |
|
106 |
print("Creating eval file")
|
107 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
108 |
os.makedirs(OUT_DIR, exist_ok=True)
|
109 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request.json" #_{precision}_{weight_type}
|
110 |
|
111 |
with open(out_path, "w") as f:
|
112 |
f.write(json.dumps(eval_entry))
|
|
|
114 |
|
115 |
##update queue file
|
116 |
queue_file_path = "./eval_queue.json"
|
117 |
+
|
118 |
+
## download queue_file from repo using HuggingFace hub API, update it and upload again
|
119 |
queue_file = hf_hub_download(
|
120 |
filename=queue_file_path,
|
121 |
repo_id=QUEUE_REPO,
|
|
|
126 |
|
127 |
with open(queue_file, "r") as f:
|
128 |
queue_data = json.load(f)
|
129 |
+
|
130 |
if len(queue_data) == 0:
|
131 |
queue_data = []
|
132 |
+
|
133 |
queue_data.append(eval_entry)
|
134 |
+
|
135 |
print(queue_data)
|
136 |
+
|
137 |
#with open(queue_file, "w") as f:
|
138 |
# json.dump(queue_data, f)
|
139 |
+
|
140 |
+
print("Updating eval queue file")
|
141 |
API.upload_file(
|
142 |
path_or_fileobj=json.dumps(queue_data, indent=2).encode("utf-8"),
|
143 |
path_in_repo=queue_file_path,
|
144 |
repo_id=QUEUE_REPO,
|
145 |
+
repo_type="space",
|
146 |
+
commit_message=f"Add {model} to eval queue"
|
147 |
)
|
148 |
|
149 |
|
|
|
153 |
path_in_repo=out_path,
|
154 |
repo_id=QUEUE_REPO,
|
155 |
repo_type="space",
|
156 |
+
commit_message=f"Add {model} request file",
|
157 |
)
|
158 |
|
159 |
|
|
|
|
|
|
|
|
|
160 |
# Remove the local file
|
161 |
os.remove(out_path)
|
162 |
|
163 |
+
|
164 |
return styled_message(
|
165 |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an 15 minutes for the model to show in the PENDING list."
|
166 |
)
|