Spaces:
Runtime error
Runtime error
import gradio as gr | |
from scipy.spatial.distance import cosine | |
from transformers import AutoModel, AutoTokenizer | |
from argparse import Namespace | |
import torch | |
from tsne import TSNE_Plot | |
tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert") | |
model_args = Namespace(do_mlm=None, | |
pooler_type="cls", | |
temp=0.05, | |
mlp_only_train=False, | |
init_embeddings_model=None) | |
model = AutoModel.from_pretrained("silk-road/luotuo-bert", | |
trust_remote_code=True, | |
model_args=model_args) | |
def divide_str(s, sep=['\n', '.', '。']): | |
mid_len = len(s) // 2 # 中心点位置 | |
best_sep_pos = len(s) + 1 # 最接近中心点的分隔符位置 | |
best_sep = None # 最接近中心点的分隔符 | |
for curr_sep in sep: | |
sep_pos = s.rfind(curr_sep, 0, mid_len) # 从中心点往左找分隔符 | |
if sep_pos > 0 and abs(sep_pos - mid_len) < abs(best_sep_pos - mid_len): | |
best_sep_pos = sep_pos | |
best_sep = curr_sep | |
if not best_sep: # 没有找到分隔符 | |
return s, '' | |
return s[:best_sep_pos + 1], s[best_sep_pos + 1:] | |
def strong_divide( s ): | |
left, right = divide_str(s) | |
if right != '': | |
return left, right | |
whole_sep = ['\n', '.', ',', '、', ';', ',', ';',\ | |
':', '!', '?', '(', ')', '”', '“', \ | |
'’', '‘', '[', ']', '{', '}', '<', '>', \ | |
'/', '''\''', '|', '-', '=', '+', '*', '%', \ | |
'$', '''#''', '@', '&', '^', '_', '`', '~',\ | |
'·', '…'] | |
left, right = divide_str(s, sep = whole_sep ) | |
if right != '': | |
return left, right | |
mid_len = len(s) // 2 | |
return s[:mid_len], s[mid_len:] | |
def generate_image(text_input): | |
# 将输入的文本按行分割并保存到列表中 | |
text_input = text_input.split('\n') | |
label = [] | |
for idx, i in enumerate(text_input): | |
if '#' in i: | |
label.append(i[i.find('#') + 1:]) | |
text_input[idx] = i[:i.find('#')] | |
else: | |
label.append('No.{}'.format(idx)) | |
divided_text = [strong_divide(i) for i in text_input] | |
text_left, text_right = [i[0] for i in divided_text], [i[1] for i in divided_text] | |
inputs = tokenizer(text_left, padding=True, truncation=True, return_tensors="pt") | |
with torch.no_grad(): | |
embeddings_left = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output | |
inputs = tokenizer(text_right, padding=True, truncation=True, return_tensors="pt") | |
with torch.no_grad(): | |
embeddings_right = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output | |
merged_list = text_left + text_right | |
merged_embed = torch.cat((embeddings_left, embeddings_right), dim=0) | |
tsne_plot = TSNE_Plot(merged_list, merged_embed, label=label * 2, n_annotation_positions=len(merged_list)) | |
fig = tsne_plot.tsne_plot(n_sentence=len(merged_list), return_fig=True) | |
return fig | |
with gr.Blocks() as demo: | |
name = gr.inputs.Textbox(lines=20, | |
placeholder='在此输入歌词,每一行为一个输入,如果需要输入歌词对应的歌名,请用#隔开\n例如:听雷声 滚滚 他默默 闭紧嘴唇 停止吟唱暮色与想念 他此刻沉痛而危险 听雷声 滚滚 他渐渐 感到胸闷 乌云阻拦明月涌河湾 他起身独立向荒原#河北墨麒麟') | |
output = gr.Plot() | |
btn = gr.Button("Generate") | |
btn.click(fn=generate_image, inputs=name, outputs=output, api_name="generate-image") | |
demo.launch(debug=True) |