Spaces:
Runtime error
Runtime error
import torch | |
from .BaseLLM import BaseLLM | |
from transformers import AutoTokenizer, AutoModel | |
from peft import PeftModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.generation import GenerationConfig | |
tokenizer_qwen = None | |
model_qwen = None | |
def initialize_Qwen2LORA(model): | |
global model_qwen, tokenizer_qwen | |
if model_qwen is None: | |
model_qwen = AutoModelForCausalLM.from_pretrained( | |
model, | |
# torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True | |
).half() | |
model_qwen = model_qwen.eval() | |
# model_qwen = PeftModel.from_pretrained( | |
# model_qwen, | |
# "silk-road/Chat-Haruhi-Fusion_B" | |
# ) | |
if tokenizer_qwen is None: | |
tokenizer_qwen = AutoTokenizer.from_pretrained( | |
model, | |
# use_fast=True, | |
trust_remote_code=True | |
) | |
return model_qwen, tokenizer_qwen | |
def Qwen_tokenizer(text): | |
return len(tokenizer_qwen.encode(text)) | |
class Qwen118k2GPT(BaseLLM): | |
def __init__(self, model): | |
super(Qwen118k2GPT, self).__init__() | |
global model_qwen, tokenizer_qwen | |
if model == "Qwen/Qwen-1_8B-Chat": | |
tokenizer_qwen = AutoTokenizer.from_pretrained( | |
"Qwen/Qwen-1_8B-Chat", | |
trust_remote_code=True | |
) | |
model_qwen = AutoModelForCausalLM.from_pretrained( | |
"Qwen/Qwen-1_8B-Chat", | |
device_map="auto", | |
trust_remote_code=True | |
).eval() | |
self.model = model_qwen | |
self.tokenizer = tokenizer_qwen | |
elif "silk-road/" in model : | |
self.model, self.tokenizer = initialize_Qwen2LORA(model) | |
else: | |
raise Exception("Unknown Qwen model") | |
self.messages = "" | |
def initialize_message(self): | |
self.messages = "" | |
def ai_message(self, payload): | |
self.messages = "AI: " + self.messages + "\n " + payload | |
def system_message(self, payload): | |
self.messages = "SYSTEM PROMPT: " + self.messages + "\n " + payload | |
def user_message(self, payload): | |
self.messages = "User: " + self.messages + "\n " + payload | |
def get_response(self): | |
with torch.no_grad(): | |
response, history = self.model.chat(self.tokenizer, self.messages, history=[]) | |
# print(response) | |
return response | |
def print_prompt(self): | |
print(type(self.messages)) | |
print(self.messages) | |