heart_failure / app.py
sihar's picture
Update app.py
156ed40
raw
history blame
1.93 kB
import streamlit as st
import pandas as pd
#title
st.title("Predict Death Event")
st.write("Created by Sihar Pangaribuan")
# User imput
age = st.number_input(label='Age', min_value=40, max_value=95, value=40, step=1)
anaemia = st.selectbox(label='Anemia', options=['0', '1'])
creatinine_phosphokinase = st.number_input(label='Creatinine Phosphokinase', min_value=23, max_value=7861, value=23, step=1)
diabetes = st.selectbox(label='Diabetes', options=['0', '1'])
ejection_fraction = st.number_input(label='Ejection Fraction', min_value=14, max_value=80, value=14, step=1)
high_blood_pressure = st.selectbox(label='High Blood Pressure', options=['0', '1'])
platelets = st.number_input(label='Platelets', min_value=25100.0, max_value=850000.0, value=25100.0, step=1.0)
serum_creatinine = st.number_input(label='Serum Creatinine', min_value=0.5, max_value=9.4, value=0.5, step=0.1)
serum_sodium = st.number_input(label='Serum Sodium', min_value=133, max_value=148, value=133, step=1)
sex = st.selectbox(label='Sex', options=['0', '1'])
smoking = st.selectbox(label='Smoking', options=['0', '1'])
time = st.number_input(label='Time', min_value=4, max_value=285, value=4, step=1)
# Convert ke data frame
data = pd.DataFrame({'age': [age],
'anemia': [anaemia],
'creatinine_phosphokinase': [creatinine_phosphokinase],
'diabetes':[diabetes],
'ejection_fraction': [ejection_fraction],
'high_blood_pressure': [high_blood_pressure],
'platelets': [platelets],
'serum_creatinine': [serum_creatinine],
'serum_sodium': [serum_sodium],
'sex': [sex],
'smoking': [smoking],
'time': [time]})
# model predict
death = rf_randomCV.predict(data).tolist()[0]
# interpretation
st.write('Predition Result: ')
if death == 0:
st.text('live')
else:
st.text('Death')