Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
#title | |
st.title("Predict Death Event") | |
st.write("Created by Sihar Pangaribuan") | |
# User imput | |
age = st.number_input(label='Age', min_value=40, max_value=95, value=40, step=1) | |
anaemia = st.selectbox(label='Anemia', options=['0', '1']) | |
creatinine_phosphokinase = st.number_input(label='Creatinine Phosphokinase', min_value=23, max_value=7861, value=23, step=1) | |
diabetes = st.selectbox(label='Diabetes', options=['0', '1']) | |
ejection_fraction = st.number_input(label='Ejection Fraction', min_value=14, max_value=80, value=14, step=1) | |
high_blood_pressure = st.selectbox(label='High Blood Pressure', options=['0', '1']) | |
platelets = st.number_input(label='Platelets', min_value=25100.0, max_value=850000.0, value=25100.0, step=1.0) | |
serum_creatinine = st.number_input(label='Serum Creatinine', min_value=0.5, max_value=9.4, value=0.5, step=0.1) | |
serum_sodium = st.number_input(label='Serum Sodium', min_value=133, max_value=148, value=133, step=1) | |
sex = st.selectbox(label='Sex', options=['0', '1']) | |
smoking = st.selectbox(label='Smoking', options=['0', '1']) | |
time = st.number_input(label='Time', min_value=4, max_value=285, value=4, step=1) | |
# Convert ke data frame | |
data = pd.DataFrame({'age': [age], | |
'anemia': [anaemia], | |
'creatinine_phosphokinase': [creatinine_phosphokinase], | |
'diabetes':[diabetes], | |
'ejection_fraction': [ejection_fraction], | |
'high_blood_pressure': [high_blood_pressure], | |
'platelets': [platelets], | |
'serum_creatinine': [serum_creatinine], | |
'serum_sodium': [serum_sodium], | |
'sex': [sex], | |
'smoking': [smoking], | |
'time': [time]}) | |
# model predict | |
death = rf_randomCV.predict(data).tolist()[0] | |
# interpretation | |
st.write('Predition Result: ') | |
if death == 0: | |
st.text('live') | |
else: | |
st.text('Death') |