taesiri commited on
Commit
48a7936
·
1 Parent(s): 5c75869

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -55
app.py CHANGED
@@ -3,7 +3,6 @@ import gradio as gr
3
  from PIL import Image
4
  import torch
5
  import matplotlib.pyplot as plt
6
- import cv2
7
  import torch
8
  import numpy as np
9
 
@@ -11,7 +10,7 @@ processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
11
  model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
12
 
13
 
14
- def process_image(image, prompt, threhsold, alpha_value, draw_rectangles):
15
  inputs = processor(
16
  text=prompt, images=image, padding="max_length", return_tensors="pt"
17
  )
@@ -32,35 +31,33 @@ def process_image(image, prompt, threhsold, alpha_value, draw_rectangles):
32
  mask_min = mask.min()
33
  mask_max = mask.max()
34
  mask = (mask - mask_min) / (mask_max - mask_min)
 
35
 
36
- # threshold the mask
37
- bmask = mask > threhsold
38
- # zero out values below the threshold
39
- mask[mask < threhsold] = 0
40
-
41
- fig, ax = plt.subplots()
42
- ax.imshow(image)
43
- ax.imshow(mask, alpha=alpha_value, cmap="jet")
44
-
45
- if draw_rectangles:
46
- contours, hierarchy = cv2.findContours(
47
- bmask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
48
- )
49
- for contour in contours:
50
- x, y, w, h = cv2.boundingRect(contour)
51
- rect = plt.Rectangle(
52
- (x, y), w, h, fill=False, edgecolor="yellow", linewidth=2
53
- )
54
- ax.add_patch(rect)
55
 
56
- ax.axis("off")
57
- plt.tight_layout()
 
 
 
 
 
 
 
58
 
59
- bmask = Image.fromarray(bmask.astype(np.uint8) * 255, "L")
60
- output_image = Image.new("RGBA", image.size, (0, 0, 0, 0))
61
- output_image.paste(image, mask=bmask)
62
 
63
- return fig, mask, output_image
 
 
 
 
 
 
 
 
 
64
 
65
 
66
  title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
@@ -72,51 +69,36 @@ with gr.Blocks() as demo:
72
  gr.Markdown("# CLIPSeg: Image Segmentation Using Text and Image Prompts")
73
  gr.Markdown(article)
74
  gr.Markdown(description)
75
- gr.Markdown(
76
- "*Example images are taken from the [ImageNet-A](https://paperswithcode.com/dataset/imagenet-a) dataset*"
77
- )
78
 
79
  with gr.Row():
80
  with gr.Column():
81
  input_image = gr.Image(type="pil")
82
- input_prompt = gr.Textbox(label="Please describe what you want to identify")
 
 
 
 
 
 
83
  input_slider_T = gr.Slider(
84
  minimum=0, maximum=1, value=0.4, label="Threshold"
85
  )
86
- input_slider_A = gr.Slider(minimum=0, maximum=1, value=0.5, label="Alpha")
87
- draw_rectangles = gr.Checkbox(label="Draw rectangles")
88
  btn_process = gr.Button(label="Process")
89
 
90
  with gr.Column():
91
- output_plot = gr.Plot(label="Segmentation Result")
92
  output_mask = gr.Image(label="Mask")
93
- output_image = gr.Image(label="Output Image")
94
 
95
  btn_process.click(
96
- process_image,
97
  inputs=[
 
 
98
  input_image,
99
- input_prompt,
100
  input_slider_T,
101
- input_slider_A,
102
- draw_rectangles,
103
  ],
104
- outputs=[output_plot, output_mask, output_image],
105
  )
106
 
107
- gr.Examples(
108
- [
109
- ["0.003473_cliff _ cliff_0.51112.jpg", "dog", 0.5, 0.5, True],
110
- ["0.001861_submarine _ submarine_0.9862991.jpg", "beacon", 0.55, 0.4, True],
111
- ["0.004658_spatula _ spatula_0.35416836.jpg", "banana", 0.4, 0.5, True],
112
- ],
113
- inputs=[
114
- input_image,
115
- input_prompt,
116
- input_slider_T,
117
- input_slider_A,
118
- draw_rectangles,
119
- ],
120
- )
121
 
122
- demo.launch()
 
3
  from PIL import Image
4
  import torch
5
  import matplotlib.pyplot as plt
 
6
  import torch
7
  import numpy as np
8
 
 
10
  model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
11
 
12
 
13
+ def process_image(image, prompt):
14
  inputs = processor(
15
  text=prompt, images=image, padding="max_length", return_tensors="pt"
16
  )
 
31
  mask_min = mask.min()
32
  mask_max = mask.max()
33
  mask = (mask - mask_min) / (mask_max - mask_min)
34
+ return mask
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ def get_masks(prompts, img, threhsold):
38
+ prompts = prompts.split(",")
39
+ masks = []
40
+ for prompt in prompts:
41
+ mask = process_image(img, prompt)
42
+ mask = mask > threhsold
43
+ masks.append(mask)
44
+ return masks
45
+
46
 
47
+ def extract_image(pos_prompts, neg_prompts, img, threhsold):
48
+ positive_masks = get_masks(pos_prompts, img, 0.5)
49
+ negative_masks = get_masks(neg_prompts, img, 0.5)
50
 
51
+ # combine masks into one masks, logic OR
52
+ pos_mask = np.any(np.stack(positive_masks), axis=0)
53
+ neg_mask = np.any(np.stack(negative_masks), axis=0)
54
+ final_mask = pos_mask & ~neg_mask
55
+
56
+ # extract the final image
57
+ final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255, "L")
58
+ output_image = Image.new("RGBA", img.size, (0, 0, 0, 0))
59
+ output_image.paste(img, mask=final_mask)
60
+ return output_image, final_mask
61
 
62
 
63
  title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
 
69
  gr.Markdown("# CLIPSeg: Image Segmentation Using Text and Image Prompts")
70
  gr.Markdown(article)
71
  gr.Markdown(description)
 
 
 
72
 
73
  with gr.Row():
74
  with gr.Column():
75
  input_image = gr.Image(type="pil")
76
+ positive_prompts = gr.Textbox(
77
+ label="Please describe what you want to identify (comma separated)"
78
+ )
79
+ negative_prompts = gr.Textbox(
80
+ label="Please describe what you want to ignore (comma separated)"
81
+ )
82
+
83
  input_slider_T = gr.Slider(
84
  minimum=0, maximum=1, value=0.4, label="Threshold"
85
  )
 
 
86
  btn_process = gr.Button(label="Process")
87
 
88
  with gr.Column():
89
+ output_image = gr.Image(label="Result")
90
  output_mask = gr.Image(label="Mask")
 
91
 
92
  btn_process.click(
93
+ extract_image,
94
  inputs=[
95
+ positive_prompts,
96
+ negative_prompts,
97
  input_image,
 
98
  input_slider_T,
 
 
99
  ],
100
+ outputs=[output_image, output_mask],
101
  )
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
+ demo.launch()