Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import tempfile | |
import os | |
import time | |
# Constants | |
MODEL_NAME = "openai/whisper-large-v3" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 25 # File size limit in MB | |
YT_LENGTH_LIMIT_S = 3600 # 1 hour YouTube file limit | |
# Device configuration (CUDA if available) | |
device = 0 if torch.cuda.is_available() else "cpu" | |
# Load Whisper model and processor | |
processor = WhisperProcessor.from_pretrained(MODEL_NAME) | |
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to(device) | |
def transcribe_audio(inputs): | |
"""Transcribe audio using Whisper model.""" | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
# Check file size (max 25MB) | |
if os.path.getsize(inputs) > FILE_LIMIT_MB * 1024 * 1024: | |
raise gr.Error(f"File size exceeds {FILE_LIMIT_MB}MB limit.") | |
# Preprocess audio input | |
audio_input = processor(inputs, return_tensors="pt", sampling_rate=16000).to(device) | |
# Generate transcription | |
predicted_ids = model.generate(audio_input.input_values, max_length=448) | |
# Decode the transcription output | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
return transcription | |
def _return_yt_html_embed(yt_url): | |
"""Return YouTube embed HTML for display.""" | |
video_id = yt_url.split("?v=")[-1] | |
html_embed = f'<center><iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe></center>' | |
return html_embed | |
def download_yt_audio(yt_url, filename): | |
"""Download audio from a YouTube URL.""" | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(f"Download error: {str(err)}") | |
# Check video length | |
file_length_s = int(info.get("duration", 0)) | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) | |
raise gr.Error(f"Maximum YouTube video length is {yt_length_limit_hms}, but video is {file_length_hms}.") | |
# Download the video | |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
ydl.download([yt_url]) | |
except youtube_dl.utils.ExtractorError as err: | |
raise gr.Error(f"Error while downloading video: {str(err)}") | |
def yt_transcribe(yt_url): | |
"""Transcribe YouTube video using Whisper model.""" | |
html_embed = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as file: | |
audio_input = file.read() | |
# Process and transcribe | |
transcription = transcribe_audio(audio_input) | |
return html_embed, transcription | |
# Create Gradio interface | |
demo = gr.Blocks() | |
# Microphone transcription interface | |
mf_transcribe = gr.Interface( | |
fn=transcribe_audio, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Transcription (Microphone)", | |
description="Transcribe audio from your microphone. File size limit is 25MB." | |
) | |
# File upload transcription interface | |
file_transcribe = gr.Interface( | |
fn=transcribe_audio, | |
inputs=[ | |
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Transcription (File)", | |
description="Upload an audio file to transcribe. File size limit is 25MB." | |
) | |
# YouTube video transcription interface | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.inputs.Textbox(lines=1, placeholder="Paste YouTube URL", label="YouTube URL"), | |
], | |
outputs=["html", "text"], | |
layout="horizontal", | |
theme="huggingface", | |
title="Free Transcript Maker", | |
description="Upload an audio file (WAV, MP3, etc.) up to 25MB to get its transcription. The transcript will be displayed and available for download. Please use responsibly." | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) | |
demo.launch(enable_queue=True) | |