Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
%%writefile app.py
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import streamlit as st
|
6 |
+
from sklearn.preprocessing import LabelEncoder
|
7 |
+
from lime.lime_tabular import LimeTabularExplainer
|
8 |
+
|
9 |
+
# -------------------------------------------------------------------------------------
|
10 |
+
df = pd.read_csv(r"C:\Users\bhati\Documents\MachineLearning\FreelanceProject\StudentPerformance\combined.csv", index_col=0)
|
11 |
+
df2 = df.copy()
|
12 |
+
obj_columns = df.select_dtypes(include=['object']).columns
|
13 |
+
num_columns = df.select_dtypes(include='number').columns
|
14 |
+
le_dict = {}
|
15 |
+
classes_dict = {}
|
16 |
+
for col in obj_columns:
|
17 |
+
le = LabelEncoder()
|
18 |
+
df2[col] = le.fit_transform(df[col])
|
19 |
+
le_dict[col] = le
|
20 |
+
classes_dict[col] = le.classes_
|
21 |
+
df2['G1'] = df2.pop('G1')
|
22 |
+
df2['G2'] = df2.pop('G2')
|
23 |
+
df2['G3'] = df2.pop('G3')
|
24 |
+
X = df2.iloc[:,:-1]
|
25 |
+
y = df2.iloc[:,-1]
|
26 |
+
allCol = X.columns
|
27 |
+
|
28 |
+
# -------------------------------------------------------------------------------------
|
29 |
+
# Load the model from the file
|
30 |
+
joblib_file = "xgb_model.joblib"
|
31 |
+
loaded_model = joblib.load(joblib_file)
|
32 |
+
|
33 |
+
# -------------------------------------------------------------------------------------
|
34 |
+
variableExpl = []
|
35 |
+
with open(r'C:\Users\bhati\Documents\MachineLearning\FreelanceProject\StudentPerformance\student.txt', 'r', encoding='utf-8') as file:
|
36 |
+
for line in file:
|
37 |
+
cleaned_line = line.strip()
|
38 |
+
# Append each cleaned line as a row to the list
|
39 |
+
variableExpl.append(cleaned_line)
|
40 |
+
|
41 |
+
variableExpl.pop(0)
|
42 |
+
for i in range(5):
|
43 |
+
variableExpl.pop(-1)
|
44 |
+
for i in range(2):
|
45 |
+
variableExpl.pop(-3)
|
46 |
+
|
47 |
+
variableExplDict = {}
|
48 |
+
for i in variableExpl:
|
49 |
+
variableExplDict[i.split()[1]] = i
|
50 |
+
|
51 |
+
# -------------------------------------------------------------------------------------
|
52 |
+
def predict_score(inputs):
|
53 |
+
if any(value == '' for value in inputs):
|
54 |
+
return "Please enter all the inputs."
|
55 |
+
|
56 |
+
#-------------------------------------------------------------------------------------------
|
57 |
+
# Create a dictionary for each input
|
58 |
+
input_df = pd.DataFrame(np.array(inputs).reshape(1, -1), columns=allCol)
|
59 |
+
|
60 |
+
|
61 |
+
#-------------------------------------------------------------------------------------------
|
62 |
+
# label encode each input
|
63 |
+
for col in obj_columns:
|
64 |
+
if col in input_df.columns:
|
65 |
+
input_df[col] = le_dict[col].transform(input_df[col])
|
66 |
+
|
67 |
+
#-------------------------------------------------------------------------------------------
|
68 |
+
# Make predictions
|
69 |
+
pred = loaded_model.predict(input_df)
|
70 |
+
|
71 |
+
# Ensure all columns are numeric
|
72 |
+
input_df = input_df.astype(float)
|
73 |
+
#-------------------------------------------------------------------------------------------
|
74 |
+
# Create a LIME explainer
|
75 |
+
explainer = LimeTabularExplainer(training_data=X.values, mode="regression", feature_names=allCol, verbose=True)
|
76 |
+
|
77 |
+
exp = explainer.explain_instance(data_row=input_df.iloc[0].to_numpy(), predict_fn=loaded_model.predict, num_features=33)
|
78 |
+
|
79 |
+
impacts = {}
|
80 |
+
for item in exp.as_list():
|
81 |
+
impacts[item[0]] = item[1]
|
82 |
+
|
83 |
+
explTable = pd.DataFrame(np.array(list(impacts.values())).reshape(1,-1), columns=impacts.keys()).T
|
84 |
+
explTable = explTable.rename(columns={0: 'ImpactOnPrediction'})
|
85 |
+
explTable['Positive/Negative'] = explTable['ImpactOnPrediction'].apply(lambda x: 'Negative' if x < 0 else 'Positive')
|
86 |
+
|
87 |
+
return pred, explTable
|
88 |
+
|
89 |
+
#-------------------------------------------------------------------------------------------
|
90 |
+
# Streamlit app
|
91 |
+
st.title("Student's Final Grade Prediction")
|
92 |
+
|
93 |
+
# Input
|
94 |
+
inputs = []
|
95 |
+
for variable in variableExplDict:
|
96 |
+
st.write(variableExplDict[variable])
|
97 |
+
if variable in obj_columns:
|
98 |
+
value = st.selectbox(variable, classes_dict[variable], key=variable) # Create a dropdown menu
|
99 |
+
else:
|
100 |
+
value = st.text_input(variable, key=variable)
|
101 |
+
inputs.append(value)
|
102 |
+
|
103 |
+
# Predict button
|
104 |
+
if st.button("Predict"):
|
105 |
+
score, explantn = predict_score(inputs)
|
106 |
+
st.write("Prediction: ", score)
|
107 |
+
st.write("Impact on prediction:", explantn)
|
108 |
+
|
109 |
+
# Clear button functionality
|
110 |
+
if st.button("Clear"):
|
111 |
+
st.experimental_rerun()
|
112 |
+
|
113 |
+
!streamlit run app.py
|