siddhartharya
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,55 +7,85 @@ import os
|
|
7 |
import tempfile
|
8 |
|
9 |
def generate_podcast(file, url, tone, length):
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
if file:
|
14 |
-
if not file.name.lower().endswith('.pdf'):
|
15 |
-
raise gr.Error("Please upload a PDF file.")
|
16 |
|
17 |
-
|
|
|
|
|
|
|
18 |
pdf_reader = pypdf.PdfReader(file.name)
|
19 |
text = ""
|
20 |
for page in pdf_reader.pages:
|
21 |
text += page.extract_text()
|
22 |
-
|
23 |
-
raise gr.Error(f"Error reading the PDF file: {str(e)}")
|
24 |
-
elif url:
|
25 |
-
try:
|
26 |
text = extract_text_from_url(url)
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
print("Warning: The input text was truncated to fit within 2048 tokens.")
|
35 |
-
|
36 |
-
try:
|
37 |
script = generate_script(SYSTEM_PROMPT, truncated_text, tone, length)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
audio_segments = []
|
42 |
-
transcript = ""
|
43 |
-
try:
|
44 |
for item in script.dialogue:
|
45 |
audio_file = generate_audio(item.text, item.speaker)
|
46 |
audio_segment = AudioSegment.from_wav(audio_file)
|
47 |
audio_segments.append(audio_segment)
|
48 |
transcript += f"**{item.speaker}**: {item.text}\n\n"
|
49 |
os.remove(audio_file) # Clean up temporary audio file
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
combined_audio.export(temp_audio.name, format="wav")
|
57 |
-
temp_audio_path = temp_audio.name
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
|
|
|
7 |
import tempfile
|
8 |
|
9 |
def generate_podcast(file, url, tone, length):
|
10 |
+
try:
|
11 |
+
if file and url:
|
12 |
+
return None, "Please provide either a PDF file or a URL, not both."
|
|
|
|
|
|
|
13 |
|
14 |
+
if file:
|
15 |
+
if not file.name.lower().endswith('.pdf'):
|
16 |
+
return None, "Please upload a PDF file."
|
17 |
+
|
18 |
pdf_reader = pypdf.PdfReader(file.name)
|
19 |
text = ""
|
20 |
for page in pdf_reader.pages:
|
21 |
text += page.extract_text()
|
22 |
+
elif url:
|
|
|
|
|
|
|
23 |
text = extract_text_from_url(url)
|
24 |
+
else:
|
25 |
+
return None, "Please provide either a PDF file or a URL."
|
26 |
+
|
27 |
+
truncated_text = truncate_text(text)
|
28 |
+
if len(truncated_text) < len(text):
|
29 |
+
print("Warning: The input text was truncated to fit within 2048 tokens.")
|
30 |
+
|
|
|
|
|
|
|
31 |
script = generate_script(SYSTEM_PROMPT, truncated_text, tone, length)
|
32 |
+
|
33 |
+
audio_segments = []
|
34 |
+
transcript = ""
|
|
|
|
|
|
|
35 |
for item in script.dialogue:
|
36 |
audio_file = generate_audio(item.text, item.speaker)
|
37 |
audio_segment = AudioSegment.from_wav(audio_file)
|
38 |
audio_segments.append(audio_segment)
|
39 |
transcript += f"**{item.speaker}**: {item.text}\n\n"
|
40 |
os.remove(audio_file) # Clean up temporary audio file
|
41 |
+
|
42 |
+
combined_audio = sum(audio_segments)
|
43 |
+
|
44 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
45 |
+
combined_audio.export(temp_audio.name, format="wav")
|
46 |
+
return temp_audio.name, transcript
|
|
|
|
|
47 |
|
48 |
+
except Exception as e:
|
49 |
+
return None, f"An error occurred: {str(e)}"
|
50 |
+
|
51 |
+
instructions = """
|
52 |
+
# Podcast Generator
|
53 |
+
|
54 |
+
Welcome to the Podcast Generator project! This tool allows you to create custom podcast episodes using AI-generated content.
|
55 |
+
|
56 |
+
## Features
|
57 |
+
* Generate podcast scripts from PDF content or web pages
|
58 |
+
* Convert text to speech for a natural listening experience
|
59 |
+
* Choose the tone of your podcast
|
60 |
+
* Export episodes as MP3 files
|
61 |
+
|
62 |
+
## How to Use
|
63 |
+
1. Upload a PDF file OR enter a URL (content will be truncated to 2048 tokens if longer)
|
64 |
+
2. Select the desired tone (humorous, casual, formal)
|
65 |
+
3. Choose the podcast length
|
66 |
+
4. Click "Generate" to create your podcast
|
67 |
+
5. Listen to the generated audio and review the transcript
|
68 |
+
|
69 |
+
Note: This tool uses the LLaMa 3.1 70B model for script generation and Voice RSS for text-to-speech conversion. The input is limited to 2048 tokens to ensure compatibility with the model. The podcast features John (Male, American accent) and Lily (Female, British accent) as hosts.
|
70 |
+
"""
|
71 |
+
|
72 |
+
iface = gr.Interface(
|
73 |
+
fn=generate_podcast,
|
74 |
+
inputs=[
|
75 |
+
gr.File(label="Upload PDF file (optional)", file_types=[".pdf"]),
|
76 |
+
gr.Textbox(label="OR Enter URL"),
|
77 |
+
gr.Radio(["humorous", "casual", "formal"], label="Select podcast tone", value="casual"),
|
78 |
+
gr.Radio(["Short (1-2 min)", "Medium (3-5 min)"], label="Podcast length", value="Medium (3-5 min)")
|
79 |
+
],
|
80 |
+
outputs=[
|
81 |
+
gr.Audio(label="Generated Podcast"),
|
82 |
+
gr.Markdown(label="Transcript")
|
83 |
+
],
|
84 |
+
title="Custom NotebookLM-type Podcast Generator (2048 token limit)",
|
85 |
+
description=instructions,
|
86 |
+
allow_flagging="never",
|
87 |
+
theme=gr.themes.Soft()
|
88 |
+
)
|
89 |
|
90 |
+
if __name__ == "__main__":
|
91 |
+
iface.launch()
|