Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,10 @@ from langchain_google_genai import ChatGoogleGenerativeAI
|
|
3 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
4 |
from langchain.prompts import PromptTemplate
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
-
from
|
7 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
8 |
from langchain.chains import create_retrieval_chain
|
9 |
-
from
|
10 |
|
11 |
# Set your API key
|
12 |
GOOGLE_API_KEY = "AIzaSyCHLS-wFvSYxSTJjkRQQ-FiC5064112Eq8"
|
@@ -29,17 +29,14 @@ pages = loader.load_and_split(text_splitter)
|
|
29 |
# Turn the chunks into embeddings and store them in Chroma
|
30 |
vectordb = Chroma.from_documents(pages, embeddings)
|
31 |
|
32 |
-
# Configure Chroma as a retriever with top_k=
|
33 |
retriever = vectordb.as_retriever(search_kwargs={"k": 10})
|
34 |
|
35 |
# Create the retrieval chain
|
36 |
-
template = """
|
37 |
-
You are a helpful AI assistant.
|
38 |
-
Answer based on the context provided.
|
39 |
context: {context}
|
40 |
input: {input}
|
41 |
-
answer:
|
42 |
-
"""
|
43 |
prompt = PromptTemplate.from_template(template)
|
44 |
combine_docs_chain = create_stuff_documents_chain(llm, prompt)
|
45 |
retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain)
|
@@ -48,4 +45,4 @@ retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain)
|
|
48 |
response = retrieval_chain.invoke({"input": "How do I apply for personal leave?"})
|
49 |
|
50 |
# Print the answer to the question
|
51 |
-
print(response["answer"])
|
|
|
3 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
4 |
from langchain.prompts import PromptTemplate
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
8 |
from langchain.chains import create_retrieval_chain
|
9 |
+
from langchain_community.document_loaders import PyPDFLoader
|
10 |
|
11 |
# Set your API key
|
12 |
GOOGLE_API_KEY = "AIzaSyCHLS-wFvSYxSTJjkRQQ-FiC5064112Eq8"
|
|
|
29 |
# Turn the chunks into embeddings and store them in Chroma
|
30 |
vectordb = Chroma.from_documents(pages, embeddings)
|
31 |
|
32 |
+
# Configure Chroma as a retriever with top_k=10
|
33 |
retriever = vectordb.as_retriever(search_kwargs={"k": 10})
|
34 |
|
35 |
# Create the retrieval chain
|
36 |
+
template = """You are a helpful AI assistant. Answer based on the context provided.
|
|
|
|
|
37 |
context: {context}
|
38 |
input: {input}
|
39 |
+
answer:"""
|
|
|
40 |
prompt = PromptTemplate.from_template(template)
|
41 |
combine_docs_chain = create_stuff_documents_chain(llm, prompt)
|
42 |
retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain)
|
|
|
45 |
response = retrieval_chain.invoke({"input": "How do I apply for personal leave?"})
|
46 |
|
47 |
# Print the answer to the question
|
48 |
+
print(response["answer"])
|