Add application file
Browse files- Dockerfile +21 -0
- app.py +52 -0
- requirements.txt +6 -0
- templates/index.html +72 -0
Dockerfile
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use an official Python runtime as the base image
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Set the working directory in the container
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Copy the application files to the container
|
| 8 |
+
COPY app.py .
|
| 9 |
+
COPY templates/ ./templates/
|
| 10 |
+
COPY model.pkl .
|
| 11 |
+
COPY vectorizer.pkl .
|
| 12 |
+
|
| 13 |
+
# Copy the requirements file and install dependencies
|
| 14 |
+
COPY requirements.txt .
|
| 15 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 16 |
+
|
| 17 |
+
# Expose the port the app will run on
|
| 18 |
+
EXPOSE 8080
|
| 19 |
+
|
| 20 |
+
# Command to run the application
|
| 21 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify, render_template
|
| 2 |
+
import nltk
|
| 3 |
+
from nltk.stem import PorterStemmer
|
| 4 |
+
from nltk.corpus import stopwords
|
| 5 |
+
import string
|
| 6 |
+
import pickle
|
| 7 |
+
|
| 8 |
+
# Initialize the app
|
| 9 |
+
app = Flask(__name__)
|
| 10 |
+
|
| 11 |
+
# Ensure NLTK resources are downloaded
|
| 12 |
+
nltk.download('stopwords')
|
| 13 |
+
nltk.download('punkt')
|
| 14 |
+
|
| 15 |
+
# Load pre-trained model and vectorizer
|
| 16 |
+
with open('model.pkl', 'rb') as file:
|
| 17 |
+
model = pickle.load(file)
|
| 18 |
+
|
| 19 |
+
with open('vectorizer.pkl', 'rb') as file:
|
| 20 |
+
vectorizer = pickle.load(file)
|
| 21 |
+
|
| 22 |
+
# Initialize stop words and stemmer
|
| 23 |
+
stop_words = set(stopwords.words('english'))
|
| 24 |
+
stemmer = PorterStemmer()
|
| 25 |
+
|
| 26 |
+
# Preprocessing function
|
| 27 |
+
def preprocess_text(input_text):
|
| 28 |
+
lowered = input_text.lower()
|
| 29 |
+
translator = str.maketrans('', '', string.punctuation)
|
| 30 |
+
cleaned_text = lowered.translate(translator)
|
| 31 |
+
tokenized_text = nltk.word_tokenize(cleaned_text)
|
| 32 |
+
stop_words_removed = [word for word in tokenized_text if word not in stop_words]
|
| 33 |
+
stemmed = [stemmer.stem(word) for word in stop_words_removed]
|
| 34 |
+
return ' '.join(stemmed)
|
| 35 |
+
|
| 36 |
+
# Route for the HTML form
|
| 37 |
+
@app.route('/')
|
| 38 |
+
def home():
|
| 39 |
+
return render_template('index.html')
|
| 40 |
+
|
| 41 |
+
# Prediction API
|
| 42 |
+
@app.route('/predict', methods=['POST'])
|
| 43 |
+
def predict():
|
| 44 |
+
data = request.json
|
| 45 |
+
input_text = data.get("text", "")
|
| 46 |
+
preprocessed = preprocess_text(input_text)
|
| 47 |
+
prediction = model.predict(vectorizer.transform([preprocessed]))
|
| 48 |
+
return jsonify({"prediction": prediction[0]})
|
| 49 |
+
|
| 50 |
+
# Run the app
|
| 51 |
+
if __name__ == '__main__':
|
| 52 |
+
app.run(host='0.0.0.0', port=8080)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Flask==2.3.3
|
| 2 |
+
nltk==3.8.1
|
| 3 |
+
numpy==1.25.1
|
| 4 |
+
scikit-learn==1.3.0
|
| 5 |
+
pandas
|
| 6 |
+
pickle
|
templates/index.html
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Text Classification</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
font-family: Arial, sans-serif;
|
| 10 |
+
margin: 50px;
|
| 11 |
+
}
|
| 12 |
+
.container {
|
| 13 |
+
max-width: 500px;
|
| 14 |
+
margin: 0 auto;
|
| 15 |
+
text-align: center;
|
| 16 |
+
}
|
| 17 |
+
input[type="text"] {
|
| 18 |
+
width: 100%;
|
| 19 |
+
padding: 10px;
|
| 20 |
+
margin-bottom: 10px;
|
| 21 |
+
font-size: 16px;
|
| 22 |
+
}
|
| 23 |
+
button {
|
| 24 |
+
padding: 10px 20px;
|
| 25 |
+
font-size: 16px;
|
| 26 |
+
cursor: pointer;
|
| 27 |
+
}
|
| 28 |
+
.result {
|
| 29 |
+
margin-top: 20px;
|
| 30 |
+
font-weight: bold;
|
| 31 |
+
}
|
| 32 |
+
</style>
|
| 33 |
+
</head>
|
| 34 |
+
<body>
|
| 35 |
+
<div class="container">
|
| 36 |
+
<h1>Text Classification</h1>
|
| 37 |
+
<input type="text" id="textInput" placeholder="Enter your text here">
|
| 38 |
+
<button onclick="classifyText()">Classify</button>
|
| 39 |
+
<div id="result" class="result"></div>
|
| 40 |
+
</div>
|
| 41 |
+
<script>
|
| 42 |
+
async function classifyText() {
|
| 43 |
+
const text = document.getElementById('textInput').value;
|
| 44 |
+
|
| 45 |
+
if (!text.trim()) {
|
| 46 |
+
document.getElementById('result').textContent = "Please enter some text!";
|
| 47 |
+
return;
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
try {
|
| 51 |
+
const response = await fetch("/predict", {
|
| 52 |
+
method: "POST",
|
| 53 |
+
headers: {
|
| 54 |
+
"Content-Type": "application/json"
|
| 55 |
+
},
|
| 56 |
+
body: JSON.stringify({ text: text })
|
| 57 |
+
});
|
| 58 |
+
|
| 59 |
+
if (response.ok) {
|
| 60 |
+
const data = await response.json();
|
| 61 |
+
document.getElementById('result').textContent = `Prediction: ${data.prediction}`;
|
| 62 |
+
} else {
|
| 63 |
+
document.getElementById('result').textContent = "Error: Unable to fetch prediction.";
|
| 64 |
+
}
|
| 65 |
+
} catch (error) {
|
| 66 |
+
console.error("Error:", error);
|
| 67 |
+
document.getElementById('result').textContent = "Error: Unable to fetch prediction.";
|
| 68 |
+
}
|
| 69 |
+
}
|
| 70 |
+
</script>
|
| 71 |
+
</body>
|
| 72 |
+
</html>
|