Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# Copyright 2023 (authors: Feiteng Li) | |
# | |
# See ../../../../LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Dict, List, Tuple, Union | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
def visualize( | |
predicts: Tuple[torch.Tensor], | |
batch: Dict[str, Union[List, torch.Tensor]], | |
output_dir: str, | |
limit: int = 4, | |
) -> None: | |
text_tokens = batch["text_tokens"].to("cpu").detach().numpy() | |
text_tokens_lens = batch["text_tokens_lens"].to("cpu").detach().numpy() | |
audio_features = batch["audio_features"].to("cpu").detach().numpy() | |
audio_features_lens = ( | |
batch["audio_features_lens"].to("cpu").detach().numpy() | |
) | |
assert text_tokens.ndim == 2 | |
utt_ids, texts = batch["utt_id"], batch["text"] | |
encoder_outputs = predicts[0].to("cpu").type(torch.float32).detach().numpy() | |
decoder_outputs = predicts[1] | |
if isinstance(decoder_outputs, list): | |
decoder_outputs = decoder_outputs[-1] | |
decoder_outputs = ( | |
decoder_outputs.to("cpu").type(torch.float32).detach().numpy() | |
) | |
vmin, vmax = 0, 1024 # Encodec | |
if decoder_outputs.dtype == np.float32: | |
vmin, vmax = -6, 0 # Fbank | |
num_figures = 3 | |
for b, (utt_id, text) in enumerate(zip(utt_ids[:limit], texts[:limit])): | |
_ = plt.figure(figsize=(14, 8 * num_figures)) | |
S = text_tokens_lens[b] | |
T = audio_features_lens[b] | |
# encoder | |
plt.subplot(num_figures, 1, 1) | |
plt.title(f"Text: {text}") | |
plt.imshow( | |
X=np.transpose(encoder_outputs[b]), | |
cmap=plt.get_cmap("jet"), | |
aspect="auto", | |
interpolation="nearest", | |
) | |
plt.gca().invert_yaxis() | |
plt.axvline(x=S - 0.4, linewidth=2, color="r") | |
plt.xlabel("Encoder Output") | |
plt.colorbar() | |
# decoder | |
plt.subplot(num_figures, 1, 2) | |
plt.imshow( | |
X=np.transpose(decoder_outputs[b]), | |
cmap=plt.get_cmap("jet"), | |
aspect="auto", | |
interpolation="nearest", | |
vmin=vmin, | |
vmax=vmax, | |
) | |
plt.gca().invert_yaxis() | |
plt.axvline(x=T - 0.4, linewidth=2, color="r") | |
plt.xlabel("Decoder Output") | |
plt.colorbar() | |
# target | |
plt.subplot(num_figures, 1, 3) | |
plt.imshow( | |
X=np.transpose(audio_features[b]), | |
cmap=plt.get_cmap("jet"), | |
aspect="auto", | |
interpolation="nearest", | |
vmin=vmin, | |
vmax=vmax, | |
) | |
plt.gca().invert_yaxis() | |
plt.axvline(x=T - 0.4, linewidth=2, color="r") | |
plt.xlabel("Decoder Target") | |
plt.colorbar() | |
plt.savefig(f"{output_dir}/{utt_id}.png") | |
plt.close() | |