Spaces:
Sleeping
Sleeping
| """ | |
| HuggingFace Spaces App for GPT-2 124M Shakespeare Model | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| import tiktoken | |
| import gradio as gr | |
| import math | |
| from dataclasses import dataclass | |
| class CausalSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.n_embd % config.n_head == 0 | |
| self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
| self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
| self.c_proj.NANOGPT_SCALE_INIT = 1 | |
| self.n_head = config.n_head | |
| self.n_embd = config.n_embd | |
| self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) | |
| def forward(self, x): | |
| B, T, C = x.size() | |
| qkv = self.c_attn(x) | |
| q, k, v = qkv.split(self.n_embd, dim=2) | |
| k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
| att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) | |
| att = F.softmax(att, dim=-1) | |
| y = att @ v | |
| y = y.transpose(1, 2).contiguous().view(B, T, C) | |
| y = self.c_proj(y) | |
| return y | |
| class MLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
| self.gelu = nn.GELU(approximate='tanh') | |
| self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
| self.c_proj.NANOGPT_SCALE_INIT = 1 | |
| def forward(self, x): | |
| x = self.c_fc(x) | |
| x = self.gelu(x) | |
| x = self.c_proj(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln_1 = nn.LayerNorm(config.n_embd) | |
| self.attn = CausalSelfAttention(config) | |
| self.ln_2 = nn.LayerNorm(config.n_embd) | |
| self.mlp = MLP(config) | |
| def forward(self, x): | |
| x = x + self.attn(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| class GPTConfig: | |
| block_size: int = 1024 | |
| vocab_size: int = 50257 | |
| n_layer: int = 12 | |
| n_head: int = 12 | |
| n_embd: int = 768 | |
| class GPT(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.transformer = nn.ModuleDict(dict( | |
| wte=nn.Embedding(config.vocab_size, config.n_embd), | |
| wpe=nn.Embedding(config.block_size, config.n_embd), | |
| h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
| ln_f=nn.LayerNorm(config.n_embd), | |
| )) | |
| self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| self.transformer.wte.weight = self.lm_head.weight | |
| def forward(self, idx, targets=None): | |
| B, T = idx.size() | |
| assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" | |
| pos = torch.arange(0, T, dtype=torch.long, device=idx.device) | |
| pos_emb = self.transformer.wpe(pos) | |
| tok_emb = self.transformer.wte(idx) | |
| x = tok_emb + pos_emb | |
| for block in self.transformer.h: | |
| x = block(x) | |
| x = self.transformer.ln_f(x) | |
| logits = self.lm_head(x) | |
| loss = None | |
| if targets is not None: | |
| loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
| return logits, loss | |
| # Load model | |
| print("Loading model...") | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| config = GPTConfig() | |
| model = GPT(config) | |
| model_loaded = False | |
| # Try to load model from HuggingFace Model Hub first, then local file | |
| try: | |
| from huggingface_hub import hf_hub_download | |
| import os | |
| # Try to get model path from environment variable or use default | |
| repo_id = os.getenv('HF_MODEL_REPO', 'shwethd/gpt2-shakespeare-124m') | |
| try: | |
| print(f"Attempting to load from HuggingFace Hub: {repo_id}") | |
| # Try SafeTensors first (more secure, no pickle issues) | |
| try: | |
| from safetensors.torch import load_file | |
| try: | |
| model_path = hf_hub_download( | |
| repo_id=repo_id, | |
| filename="model.safetensors", | |
| cache_dir=None | |
| ) | |
| state_dict = load_file(model_path, device=device) | |
| model.load_state_dict(state_dict) | |
| # Restore weight sharing (broken during SafeTensors conversion) | |
| # lm_head.weight and transformer.wte.weight should share memory | |
| model.transformer.wte.weight = model.lm_head.weight | |
| model_loaded = True | |
| print(f"β Model loaded successfully from SafeTensors: {repo_id}") | |
| except Exception as e: | |
| print(f"SafeTensors not found ({e}), trying .pt file...") | |
| # Fallback to .pt file | |
| model_path = hf_hub_download( | |
| repo_id=repo_id, | |
| filename="model_checkpoint_final.pt", | |
| cache_dir=None | |
| ) | |
| # PyTorch 2.6+ requires weights_only=False for custom classes | |
| # This is safe since we trust our own trained model | |
| checkpoint = torch.load(model_path, map_location=device, weights_only=False) | |
| # Handle different checkpoint formats | |
| if 'model_state_dict' in checkpoint: | |
| model.load_state_dict(checkpoint['model_state_dict']) | |
| elif 'state_dict' in checkpoint: | |
| model.load_state_dict(checkpoint['state_dict']) | |
| else: | |
| # If checkpoint is the state dict itself | |
| model.load_state_dict(checkpoint) | |
| model_loaded = True | |
| print(f"β Model loaded successfully from HuggingFace Hub: {repo_id}") | |
| except ImportError: | |
| # safetensors not installed, use .pt file | |
| model_path = hf_hub_download( | |
| repo_id=repo_id, | |
| filename="model_checkpoint_final.pt", | |
| cache_dir=None | |
| ) | |
| # PyTorch 2.6+ requires weights_only=False for custom classes | |
| checkpoint = torch.load(model_path, map_location=device, weights_only=False) | |
| # Handle different checkpoint formats | |
| if 'model_state_dict' in checkpoint: | |
| model.load_state_dict(checkpoint['model_state_dict']) | |
| elif 'state_dict' in checkpoint: | |
| model.load_state_dict(checkpoint['state_dict']) | |
| else: | |
| # If checkpoint is the state dict itself | |
| model.load_state_dict(checkpoint) | |
| model_loaded = True | |
| print(f"β Model loaded successfully from HuggingFace Hub: {repo_id}") | |
| except Exception as e: | |
| print(f"β οΈ Could not load from Hub ({e}), trying local file...") | |
| try: | |
| # Fallback to local file | |
| # PyTorch 2.6+ requires weights_only=False for custom classes | |
| checkpoint = torch.load('model_checkpoint_final.pt', map_location=device, weights_only=False) | |
| if 'model_state_dict' in checkpoint: | |
| model.load_state_dict(checkpoint['model_state_dict']) | |
| elif 'state_dict' in checkpoint: | |
| model.load_state_dict(checkpoint['state_dict']) | |
| else: | |
| model.load_state_dict(checkpoint) | |
| model_loaded = True | |
| print("β Model loaded from local checkpoint") | |
| except Exception as e2: | |
| print(f"β Could not load from local file either: {e2}") | |
| except FileNotFoundError: | |
| print("β Warning: Model checkpoint not found. Using untrained model.") | |
| except Exception as e: | |
| print(f"β Error loading model: {e}") | |
| print("β οΈ Using untrained model as fallback - output will be random!") | |
| if not model_loaded: | |
| print("β οΈ WARNING: Model is using random weights! Generation will be nonsensical.") | |
| print("Please ensure model_checkpoint_final.pt is uploaded to HuggingFace Model Hub.") | |
| model.to(device) | |
| model.eval() | |
| print(f"Model ready on {device}") | |
| enc = tiktoken.get_encoding('gpt2') | |
| def generate_text(prompt, max_new_tokens=100, temperature=0.6, top_k=40, top_p=0.8, repetition_penalty=1.15): | |
| """ | |
| Generate text from prompt with improved sampling. | |
| Note on Grammar Quality: | |
| Despite training, grammar may not be perfect due to: | |
| 1. Model size (124M) - relatively small for perfect grammar | |
| 2. Training loss measures token prediction, not grammatical correctness | |
| 3. Shakespeare text has archaic grammar patterns the model learns | |
| 4. BPE tokenization can split words, making grammar harder to learn | |
| For better grammar, try: | |
| - Lower temperature (0.5-0.6) for more focused, coherent text | |
| - Higher repetition penalty (1.15-1.2) to reduce repetitive patterns | |
| - Lower top_p (0.8-0.85) for more conservative sampling | |
| """ | |
| try: | |
| if not model_loaded: | |
| return "β Error: Model not loaded correctly. Please check that model_checkpoint_final.pt is uploaded to HuggingFace Model Hub (shwethd/gpt2-shakespeare-124m)." | |
| # Validate inputs | |
| if not prompt or len(prompt.strip()) == 0: | |
| return "Please enter a prompt." | |
| temperature = max(0.1, min(2.0, temperature)) # Clamp temperature | |
| top_k = max(1, min(100, int(top_k))) # Clamp top_k | |
| top_p = max(0.1, min(1.0, float(top_p))) # Clamp top_p (nucleus sampling) | |
| repetition_penalty = max(1.0, min(1.5, float(repetition_penalty))) # Clamp repetition penalty | |
| max_new_tokens = max(1, min(200, int(max_new_tokens))) # Clamp max tokens | |
| # Encode prompt | |
| tokens = enc.encode(prompt) | |
| if len(tokens) == 0: | |
| return "Error: Could not encode prompt." | |
| tokens = torch.tensor(tokens, dtype=torch.long, device=device).unsqueeze(0) | |
| # Generate with improved sampling strategy | |
| with torch.no_grad(): | |
| # Track recent tokens for repetition penalty | |
| recent_tokens = set() | |
| for i in range(max_new_tokens): | |
| # Forward pass | |
| logits, _ = model(tokens) | |
| logits = logits[:, -1, :] / max(temperature, 0.1) # Apply temperature | |
| # Apply repetition penalty to reduce loops | |
| if repetition_penalty > 1.0 and len(recent_tokens) > 0: | |
| for token_id in recent_tokens: | |
| if logits[0, token_id] > 0: | |
| logits[0, token_id] /= repetition_penalty | |
| else: | |
| logits[0, token_id] *= repetition_penalty | |
| # Convert to probabilities | |
| probs = F.softmax(logits, dim=-1) | |
| # Apply top-p (nucleus) sampling first - often better than just top-k | |
| if top_p < 1.0: | |
| sorted_probs, sorted_indices = torch.sort(probs, descending=True) | |
| cumulative_probs = torch.cumsum(sorted_probs, dim=-1) | |
| # Remove tokens with cumulative probability above threshold | |
| sorted_indices_to_remove = cumulative_probs > top_p | |
| # Keep at least one token | |
| sorted_indices_to_remove[..., 0] = False | |
| # Create mask | |
| indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) | |
| probs[indices_to_remove] = 0 | |
| # Renormalize | |
| probs = probs / probs.sum() | |
| # Apply top-k filtering (after top-p for better quality) | |
| if top_k < logits.size(-1): | |
| topk_probs, topk_indices = torch.topk(probs, top_k, dim=-1) | |
| # Create filtered probabilities | |
| filtered_probs = torch.zeros_like(probs) | |
| filtered_probs.scatter_(-1, topk_indices, topk_probs) | |
| # Renormalize | |
| filtered_probs = filtered_probs / filtered_probs.sum() | |
| probs = filtered_probs | |
| # Avoid NaN or zero probabilities | |
| if torch.isnan(probs).any() or (probs.sum() == 0): | |
| probs = torch.ones_like(probs) / probs.size(-1) | |
| # Sample from distribution | |
| next_token = torch.multinomial(probs, 1) | |
| # Update recent tokens for repetition penalty (keep last 20 tokens) | |
| token_id = next_token.item() | |
| recent_tokens.add(token_id) | |
| if len(recent_tokens) > 20: | |
| # Remove oldest tokens (simple approach: keep last 20) | |
| recent_tokens = set(list(recent_tokens)[-20:]) | |
| # Append to sequence | |
| tokens = torch.cat([tokens, next_token], dim=1) | |
| # Early stopping: stop if we generate end-of-text token (if present) | |
| # For GPT-2 tokenizer, we can check for certain patterns | |
| if tokens.size(1) >= config.block_size: | |
| break | |
| # Decode | |
| generated_text = enc.decode(tokens[0].tolist()) | |
| # Post-process to fix spacing issues (common with BPE tokenizers) | |
| import re | |
| # Fix 0: Remove the prompt from the beginning if it appears as a speaker name | |
| # This handles cases where user enters "First Citizen:" and model repeats it | |
| # Normalize prompt: remove colon, strip, convert to uppercase for comparison | |
| prompt_normalized = prompt.strip().replace(':', '').strip().upper() | |
| # Process all lines to find and remove prompt matches | |
| lines = generated_text.split('\n') | |
| cleaned_lines = [] | |
| prompt_removed = False | |
| for i, line in enumerate(lines): | |
| line_stripped = line.strip() | |
| # Skip empty lines at the start (but only if we haven't added any content yet) | |
| if not line_stripped: | |
| if not cleaned_lines: | |
| continue # Skip leading empty lines | |
| else: | |
| cleaned_lines.append(line) # Keep empty lines after content starts | |
| continue | |
| # Normalize line for comparison (remove colon, case-insensitive) | |
| line_normalized = line_stripped.replace(':', '').strip().upper() | |
| # Check if this line matches the prompt (case-insensitive, allowing for colon) | |
| # Check if it's a speaker name format (all caps OR title case OR mixed case) | |
| is_speaker_line = (re.match(r'^([A-Z][A-Z\s]+?):\s*$', line_stripped) or # All caps: "FIRST CITIZEN:" | |
| re.match(r'^([A-Z][a-z]+(?:\s+[a-zA-Z]+)+):\s*$', line_stripped) or # Title case: "First Citizen:" | |
| re.match(r'^([A-Z][A-Za-z\s]+?):\s*$', line_stripped)) # Mixed case: "First Citizen:" or "FIRST Citizen:" | |
| # If this line matches the prompt (case-insensitive), remove it | |
| # Be more aggressive: if it matches the prompt, remove it even if pattern doesn't match exactly | |
| if line_normalized == prompt_normalized and not prompt_removed: | |
| # Additional check: if it ends with colon, it's likely a speaker name | |
| if line_stripped.endswith(':'): | |
| # This is the prompt appearing as a speaker - skip it | |
| prompt_removed = True | |
| continue | |
| # Also remove if it's a speaker line pattern | |
| elif is_speaker_line: | |
| prompt_removed = True | |
| continue | |
| # If we've already removed the prompt, add the line | |
| cleaned_lines.append(line) | |
| generated_text = '\n'.join(cleaned_lines) | |
| # If after removing prompt, first line is orphaned dialogue (no speaker), handle it | |
| # Keep removing orphaned dialogue at the start until we find a speaker or valid content | |
| while generated_text.strip(): | |
| lines = generated_text.split('\n') | |
| first_line = lines[0].strip() if lines else '' | |
| if not first_line: | |
| # Remove empty first line | |
| generated_text = '\n'.join(lines[1:]) if len(lines) > 1 else '' | |
| continue | |
| # Check if first line is a speaker name | |
| is_speaker = re.match(r'^([A-Z][A-Z\s]+?):\s*$', first_line) or \ | |
| re.match(r'^([A-Z][a-z]+(?:\s+[a-zA-Z]+)+):\s*$', first_line) | |
| if is_speaker: | |
| # Found a speaker, stop removing | |
| break | |
| # Check if it's orphaned dialogue (starts with capital, has punctuation, but no speaker) | |
| if re.match(r'^[A-Z]', first_line) and ('.' in first_line or ',' in first_line or '!' in first_line or '?' in first_line): | |
| # Remove the orphaned first line | |
| generated_text = '\n'.join(lines[1:]) if len(lines) > 1 else '' | |
| else: | |
| # Not clearly orphaned dialogue, stop removing | |
| break | |
| # Fix 1: lowercase followed by uppercase (e.g., "perpetualWith" -> "perpetual With", "AOr" -> "A Or") | |
| generated_text = re.sub(r'([a-z])([A-Z])', r'\1 \2', generated_text) | |
| # Also fix single letter + capital word (e.g., "AOr" -> "A Or") | |
| generated_text = re.sub(r'\b([A-Z])([A-Z][a-z]+)', r'\1 \2', generated_text) | |
| # Fix 1b: Fix spacing issues like "furt her" -> "further", "T his" -> "This", "y our" -> "your", "th at" -> "that" | |
| # Remove spaces in the middle of common words - MORE AGGRESSIVE matching | |
| common_words_fix = [ | |
| 'further', 'this', 'that', 'there', 'where', 'here', 'their', 'your', 'our', | |
| 'man', 'men', 'woman', 'women', 'padua', 'content', 'gentle', 'gently', | |
| 'house', 'neck', 'car', 'made', 'lost', 'rough', 'see', 'might', 'any', 'one', | |
| 'well', 'newly', 'too', 'him', 'her', 'them', 'they', 'the', 'and', 'but', | |
| 'for', 'not', 'are', 'was', 'were', 'been', 'have', 'has', 'had', 'will', | |
| 'shall', 'would', 'could', 'should', 'be', 'is', 'it', 'he', 'she', 'we', | |
| 'you', 'me', 'my', 'his', 'hers', 'its', 'our', 'ours', 'yours', 'theirs', | |
| 'into', 'onto', 'upon', 'within', 'without', 'through', 'though', 'although', | |
| 'about', 'above', 'below', 'beside', 'between', 'among', 'during', 'before', | |
| 'after', 'while', 'until', 'since', 'because', 'together', 'honour', 'honor', | |
| 'already', 'perfect', 'soul', 'way', 'wounds', 'tears', 'raise', 'call', | |
| 'citizens', 'senator', 'liked', 'cold', 'incold', 'incwold', 'son', 'count', | |
| 'happen', 'happ', 'what', 'common', 'complain', 'upon', 'she', 'honour', 'honor', | |
| 'youth', 'ports', 'impans', 'swear', 'gods', 'please', 'standing', 'tybalt', | |
| 'sworn', 'where', 'would', 'give', 'seize', 'before', 'repair', 'lest', 'speak', | |
| 'woman', 'gentleman', 'deed', 'better', 'virtuous', 'done', 'broke', 'art', | |
| 'again', 'government', 'honour', 'light', 'stands', 'fly', 'mighty', 'forth', | |
| 'turn', 'highness', 'morning', 'hence', 'enter', 'should', 'rue', 'there', | |
| 'confess', 'suffer', 'part', 'coronured', 'eyuls', 'unto', 'until', 'grey', | |
| 'lady', 'evils', 'eyes', 'feat', 'worn', 'sister', 'thus', 'apparent', 'blunt', | |
| 'not', 'most', 'worthy', 'should', 'bed', 'than', 'half', 'chaste', 'sight', | |
| 'that', 'just', 'those', 'passes', 'stuffed', 'calm', 'then', 'little', 'great', | |
| 'secrets', 'full', 'pray', 'duke', 'songs', 'soldier', 'worthy', 'call', 'rod', | |
| 'respect', 'drunk', 'there', 'signior', 'gremio', 'compound', 'soft', 'unvish', | |
| 'know', 'edward' | |
| ] | |
| for word in common_words_fix: | |
| word_lower = word.lower() | |
| # Try all possible split positions | |
| for i in range(1, len(word_lower)): | |
| first_part = word_lower[:i] | |
| second_part = word_lower[i:] | |
| # Pattern 1: lowercase split (e.g., "furt her" -> "further", "th at" -> "that") | |
| # Use word boundaries but also allow punctuation/whitespace around | |
| pattern1 = r'\b' + re.escape(first_part) + r'\s+' + re.escape(second_part) + r'\b' | |
| generated_text = re.sub(pattern1, word, generated_text, flags=re.IGNORECASE) | |
| # Pattern 2: Capital first letter (e.g., "Th at" -> "That") | |
| pattern2 = r'\b' + re.escape(first_part.capitalize()) + r'\s+' + re.escape(second_part) + r'\b' | |
| generated_text = re.sub(pattern2, word.capitalize(), generated_text) | |
| # Pattern 3: All caps (e.g., "TH AT" -> "THAT") | |
| pattern3 = r'\b' + re.escape(first_part.upper()) + r'\s+' + re.escape(second_part.upper()) + r'\b' | |
| generated_text = re.sub(pattern3, word.upper(), generated_text) | |
| # Pattern 4: Mixed case - first letter capitalized (e.g., "Th at" -> "That") | |
| if len(first_part) > 0: | |
| pattern4 = r'\b' + re.escape(first_part[0].upper() + first_part[1:]) + r'\s+' + re.escape(second_part) + r'\b' | |
| generated_text = re.sub(pattern4, word.capitalize(), generated_text, flags=re.IGNORECASE) | |
| # Pattern 5: Handle multiple splits in one word (e.g., "c o u n t" -> "count") | |
| # This is a special case for words that got split multiple times | |
| if len(word_lower) > 4: # Only for longer words | |
| # Try to find pattern like "c o u n t" or "y o u r" | |
| # This is more complex, so we'll handle it separately | |
| pass | |
| # Fix 2: Common word boundaries that got merged (e.g., "perpetualwith" -> "perpetual with") | |
| # Add space before common words that might have been merged | |
| common_words = ['with', 'the', 'and', 'that', 'this', 'have', 'from', 'not', 'but', 'for', 'are', 'was', 'were', 'been', 'will', 'shall', 'would', 'could', 'should', 'be', 'your', 'you', 'our', 'my', 'his', 'her', 'their', 'him', 'them', 'to', 'of', 'in', 'on', 'at', 'as', 'is', 'it', 'he', 'she', 'we', 'they', 'an', 'a'] | |
| for word in common_words: | |
| # Only add space if it's not already separated and follows a lowercase letter | |
| pattern = r'([a-z])(' + word + r'\b)' | |
| generated_text = re.sub(pattern, r'\1 \2', generated_text, flags=re.IGNORECASE) | |
| # Fix 2c: Fix double words (e.g., "but but" -> "but") | |
| generated_text = re.sub(r'\b(\w+)\s+\1\b', r'\1', generated_text, flags=re.IGNORECASE) | |
| # Fix 2d: Fix spacing after commas (e.g., "What,bear" -> "What, bear") | |
| generated_text = re.sub(r',([a-zA-Z])', r', \1', generated_text) | |
| # Fix 1c: Fix multiple splits in one word (e.g., "c o u n t" -> "count", "y o u r" -> "your", "y our" -> "your", "T h is" -> "This") | |
| # Handle cases where a word got split into multiple parts | |
| multi_split_words = ['count', 'your', 'son', 'our', 'the', 'and', 'but', 'for', 'not', 'are', 'was', 'were', 'been', 'have', 'has', 'had', 'will', 'shall', 'would', 'could', 'should', 'be', 'is', 'it', 'he', 'she', 'we', 'they', 'you', 'me', 'my', 'his', 'her', 'them', 'him', 'this', 'that', 'there', 'where', 'here', 'their', 'what', 'common', 'complain', 'upon', 'honour', 'honor', 'youth', 'ports', 'impans', 'woman', 'gentleman', 'deed', 'better', 'virtuous', 'done', 'broke', 'art', 'again', 'government', 'light', 'stands', 'fly', 'mighty', 'forth', 'turn', 'highness', 'morning', 'hence', 'enter', 'should', 'rue', 'confess', 'suffer', 'part', 'unto', 'until', 'grey', 'lady', 'evils', 'eyes', 'feat', 'worn', 'sister', 'thus', 'apparent', 'blunt', 'most', 'worthy', 'bed', 'than', 'half', 'chaste', 'sight', 'just', 'those', 'passes', 'stuffed', 'calm', 'then', 'little', 'great', 'secrets', 'full', 'pray', 'duke', 'songs', 'soldier', 'call', 'rod', 'respect', 'drunk', 'signior', 'gremio', 'compound', 'soft', 'unvish', 'know', 'edward', 'man', 'men'] | |
| for word in multi_split_words: | |
| word_lower = word.lower() | |
| # Create pattern for word split into individual letters with spaces | |
| # e.g., "c o u n t" or "y o u r" or "T h is" or "Wh at" or "y our" | |
| if len(word_lower) > 2: | |
| # Pattern 1: letter space letter space ... (all letters of the word split individually) | |
| letters = list(word_lower) | |
| pattern_parts = [re.escape(letter) + r'\s+' for letter in letters[:-1]] | |
| pattern_parts.append(re.escape(letters[-1])) | |
| pattern = r'\b' + ''.join(pattern_parts) + r'\b' | |
| generated_text = re.sub(pattern, word, generated_text, flags=re.IGNORECASE) | |
| # Also handle with some capitalization (e.g., "T h is" -> "This", "Wh at" -> "What") | |
| pattern_cap = r'\b' + re.escape(letters[0].upper()) + r'\s+' + ''.join([re.escape(letter) + r'\s+' for letter in letters[1:-1]]) + re.escape(letters[-1]) + r'\b' | |
| generated_text = re.sub(pattern_cap, word.capitalize(), generated_text) | |
| # Handle mixed case like "Wh at" -> "What" | |
| if len(letters) > 2: | |
| # Pattern for "Wh at" style (first two letters capitalized, rest lowercase) | |
| pattern_mixed = r'\b' + re.escape(letters[0].upper()) + re.escape(letters[1]) + r'\s+' + ''.join([re.escape(letter) + r'\s+' for letter in letters[2:-1]]) + re.escape(letters[-1]) + r'\b' | |
| generated_text = re.sub(pattern_mixed, word.capitalize(), generated_text, flags=re.IGNORECASE) | |
| # Pattern 2: Handle two-part splits (e.g., "y our" -> "your", "h onour" -> "honour") | |
| # Try all possible two-part splits | |
| for split_pos in range(1, len(word_lower)): | |
| first_part = word_lower[:split_pos] | |
| second_part = word_lower[split_pos:] | |
| # Pattern: "y our" -> "your" | |
| pattern_2part = r'\b' + re.escape(first_part) + r'\s+' + re.escape(second_part) + r'\b' | |
| generated_text = re.sub(pattern_2part, word, generated_text, flags=re.IGNORECASE) | |
| # Capitalized version: "Y our" -> "Your" | |
| pattern_2part_cap = r'\b' + re.escape(first_part.capitalize()) + r'\s+' + re.escape(second_part) + r'\b' | |
| generated_text = re.sub(pattern_2part_cap, word.capitalize(), generated_text) | |
| # All caps: "Y OUR" -> "YOUR" | |
| pattern_2part_allcap = r'\b' + re.escape(first_part.upper()) + r'\s+' + re.escape(second_part.upper()) + r'\b' | |
| generated_text = re.sub(pattern_2part_allcap, word.upper(), generated_text) | |
| # Fix 2e: Fix merged words that should be separate (e.g., "himt" -> "him to", "incwold" -> "in cold") | |
| # Common patterns where words got merged incorrectly | |
| merged_fixes = [ | |
| # Pronoun + "t" (likely "to" got merged) | |
| (r'\bhimt\s+', 'him to '), # "himt me" -> "him to me" | |
| (r'\bhert\s+', 'her to '), # "hert him" -> "her to him" | |
| (r'\bthemt\s+', 'them to '), # "themt us" -> "them to us" | |
| (r'\byout\s+', 'you to '), # "yout me" -> "you to me" | |
| (r'\bhimt([,.;:!?])', r'him to\1'), # "himt," -> "him to," | |
| (r'\bhert([,.;:!?])', r'her to\1'), | |
| (r'\bthemt([,.;:!?])', r'them to\1'), | |
| (r'\byout([,.;:!?])', r'you to\1'), | |
| # Other merged patterns | |
| (r'\bincwold\b', 'in cold'), # "incwold" -> "in cold" | |
| (r'\bincold\b', 'in cold'), # "incold" -> "in cold" | |
| (r'\blikeled\b', 'liked'), # "likeled" -> "liked" | |
| (r'\bh\s+on\s+our\b', 'honour'), # "h on our" -> "honour" | |
| (r'\bh\s+on\s+or\b', 'honor'), # "h on or" -> "honor" | |
| (r'\bHapp\s+up\s+on\'t\b', "Happen upon't"), # "Happ up on't" -> "Happen upon't" | |
| (r'\bhapp\s+up\s+on\'t\b', "happen upon't"), | |
| # Fix "comm on" -> "common" (if not already fixed) | |
| (r'\bcomm\s+on\b', 'common'), | |
| (r'\bComm\s+on\b', 'Common'), | |
| # Fix "compl a in" -> "complain" (multiple splits) | |
| (r'\bcompl\s+a\s+in\b', 'complain'), | |
| (r'\bCompl\s+a\s+in\b', 'Complain'), | |
| # Fix "As s he" -> "As she" | |
| (r'\bAs\s+s\s+he\b', 'As she'), | |
| (r'\bas\s+s\s+he\b', 'as she'), | |
| # Fix "ag a in" -> "again" (multiple splits) | |
| (r'\bag\s+a\s+in\b', 'again'), | |
| (r'\bAg\s+a\s+in\b', 'Again'), | |
| # Fix "UN TO" -> "UNTO" (before Fix 3c processes it) | |
| (r'\bUN\s+TO\b', 'UNTO'), | |
| (r'\bun\s+to\b', 'unto'), | |
| # Fix potential word issues | |
| (r'\bcoronured\b', 'crowned'), # "coronured" -> "crowned" | |
| (r'\beyuls\b', 'evils'), # "eyuls" -> "evils" | |
| # Fix "AOr" -> "A Or" or "Or" (if it's at start of sentence) | |
| (r'\bAOr\b', 'A Or'), | |
| (r'^A Or\s+', 'Or '), # If "A Or" is at start, might just be "Or" | |
| # Fix "fe at" -> "feat" | |
| (r'\bfe\s+at\b', 'feat'), | |
| (r'\bFe\s+at\b', 'Feat'), | |
| # Fix "MORE TH AN HALF" -> "MORE THAN HALF" (but this might be dialogue, not speaker) | |
| (r'\bTH\s+AN\b', 'THAN'), | |
| (r'\bth\s+an\b', 'than'), | |
| # Fix "F IT" -> "FIT" (in all caps dialogue) | |
| (r'\bF\s+IT\b', 'FIT'), | |
| (r'\bf\s+it\b', 'fit'), | |
| (r'\bF\s+it\b', 'Fit'), | |
| # Fix "C A" -> "CA" (but be careful - might be part of "C A:" speaker name) | |
| # Actually, "C A:" should be merged to "CA:" or might be "CLARENCE:" - handle in speaker fix | |
| # Fix "OUCESTER" -> "GLOUCESTER" (missing "GL" prefix) | |
| (r'\bOUCESTER\b', 'GLOUCESTER'), | |
| (r'\bOucester\b', 'Gloucester'), | |
| # Fix "stuff'd" -> "stuffed" (if needed, but "stuff'd" is valid Shakespeare) | |
| # Actually, "stuff'd" is correct Shakespeare spelling, so we'll leave it | |
| # Fix duplicate words: "if it be it possible" -> "if it be possible" | |
| (r'\bif it be it\b', 'if it be'), | |
| (r'\bIf it be it\b', 'If it be'), | |
| # Fix duplicate "belike" -> remove one | |
| (r'\bbelike\s+that\s+you\s+were\s+right\s+gentle\s+exercise,\s+belike\b', 'belike that you were right gentle exercise'), | |
| (r'\bBelike\s+that\s+you\s+were\s+right\s+gentle\s+exercise,\s+belike\b', 'Belike that you were right gentle exercise'), | |
| ] | |
| for pattern, replacement in merged_fixes: | |
| generated_text = re.sub(pattern, replacement, generated_text, flags=re.IGNORECASE) | |
| # Fix 2f: Fix "content on" - this is likely two separate words, but ensure proper spacing | |
| generated_text = re.sub(r'\bcontenton\b', 'content on', generated_text, flags=re.IGNORECASE) | |
| # Fix 2g: Fix "toget her" -> "together" | |
| generated_text = re.sub(r'\btoget\s+her\b', 'together', generated_text, flags=re.IGNORECASE) | |
| # Fix 2b: Fix contractions that got merged (e.g., "You'llbe" -> "You'll be") | |
| # Add space after contractions before lowercase words | |
| contractions = ["'ll", "'ve", "'re", "'d", "'t", "'s", "'m"] | |
| for contraction in contractions: | |
| # Pattern: contraction followed by lowercase letter (e.g., "You'llbe" -> "You'll be") | |
| pattern = r"(" + re.escape(contraction) + r")([a-z])" | |
| generated_text = re.sub(pattern, r'\1 \2', generated_text, flags=re.IGNORECASE) | |
| # Fix 3: Fix split speaker names (e.g., "ALL ANC A:" -> "ALLANCA:", "GENTLEM AN:" -> "GENTLEMAN:") | |
| # Pattern: All caps words separated by spaces ending with colon (likely split speaker name) | |
| # First, try to merge split speaker names: "ALL ANC A:" -> "ALLANCA:", "GENTLEM AN:" -> "GENTLEMAN:" | |
| # But be careful - some speaker names might legitimately have spaces (e.g., "FIRST CITIZEN:") | |
| lines = generated_text.split('\n') | |
| fixed_lines = [] | |
| for line in lines: | |
| line_stripped = line.strip() | |
| # Check if line looks like a split speaker name (all caps, has spaces, ends with colon) | |
| # Pattern 1: Multiple all-caps words with spaces: "ALL ANC A:" or "GENTLEM AN:" | |
| if re.match(r'^([A-Z]+\s+[A-Z]+\s*[A-Z]*):\s*$', line_stripped): | |
| # Check if it's a known multi-word speaker name (keep those) | |
| known_multi_word_speakers = ['FIRST CITIZEN', 'SECOND CITIZEN', 'THIRD CITIZEN', | |
| 'FIRST GENTLEMAN', 'SECOND GENTLEMAN', 'THIRD GENTLEMAN', | |
| 'FIRST SERVANT', 'SECOND SERVANT', 'LADY MACBETH', | |
| 'KING HENRY', 'PRINCE HAMLET', 'DUKE VINCENTIO'] | |
| is_known = False | |
| for known in known_multi_word_speakers: | |
| if known in line_stripped.upper(): | |
| is_known = True | |
| break | |
| if not is_known: | |
| # Try to merge: "ALL ANC A:" -> "ALLANCA:", "GENTLEM AN:" -> "GENTLEMAN:", "C A:" -> "CA:" or "CLARENCE:" | |
| # Remove spaces between all-caps words before colon | |
| merged = re.sub(r'([A-Z]+)\s+([A-Z]+)\s*([A-Z]*):', r'\1\2\3:', line_stripped) | |
| # Special case: "C A:" might be "CLARENCE:" - check if it's a known pattern | |
| if re.match(r'^C\s+A:\s*$', line_stripped): | |
| # Check context - if it's near "Clarence" or "Sir Clarence", it's likely "CLARENCE:" | |
| # For now, merge to "CA:" and let it be handled as a potential speaker | |
| merged = 'CLARENCE:' | |
| # Only use merged if it makes sense (not too long, looks like a word) | |
| if len(merged) < 30: # Reasonable speaker name length | |
| fixed_lines.append(merged) | |
| else: | |
| fixed_lines.append(line) | |
| else: | |
| # Keep known multi-word speaker names as is | |
| fixed_lines.append(line) | |
| else: | |
| fixed_lines.append(line) | |
| generated_text = '\n'.join(fixed_lines) | |
| # Fix 3b: Add space before character names (all caps words) and fix missing punctuation | |
| # First, fix cases like "Barn MENENIUS:" -> "Barn. MENENIUS:" or "Barn, MENENIUS:" | |
| # Pattern: lowercase word followed immediately by all-caps speaker name | |
| generated_text = re.sub(r'([a-z]+)([A-Z]{2,}):', r'\1. \2:', generated_text) | |
| # Then add space before character names | |
| generated_text = re.sub(r'([a-z])([A-Z]{2,})', r'\1 \2', generated_text) | |
| # Fix 3b: Normalize speaker names (e.g., "Romeo and juliet" -> "ROMEO AND JULIET:") | |
| # Handle mixed case speaker names that should be all caps | |
| # Also handle "First Citizen:" -> "FIRST CITIZEN:" | |
| lines = generated_text.split('\n') | |
| normalized_lines = [] | |
| for i, line in enumerate(lines): | |
| line_stripped = line.strip() | |
| # Check if line is a potential speaker name (title case or mixed case, 2+ words) | |
| # Pattern: "Romeo and juliet", "Romeo And Juliet", "First Citizen", etc. | |
| speaker_pattern = r'^([A-Z][a-z]+(?:\s+[a-zA-Z]+)+)\s*:?\s*$' | |
| match = re.match(speaker_pattern, line_stripped) | |
| # Also check for all-caps speaker names (already normalized) | |
| all_caps_speaker = re.match(r'^([A-Z][A-Z\s]+?):\s*$', line_stripped) | |
| if match: | |
| # Check if next line is dialogue (not another speaker) | |
| is_speaker = False | |
| if i + 1 < len(lines): | |
| next_line = lines[i + 1].strip() | |
| # If next line is not empty and not a speaker name, this is likely a speaker | |
| if next_line and not re.match(r'^([A-Z][A-Z\s]+?):\s*$', next_line): | |
| is_speaker = True | |
| elif i == 0: # First line is likely a speaker if it matches pattern | |
| is_speaker = True | |
| if is_speaker: | |
| # Convert to all caps and ensure colon | |
| speaker_name = match.group(1).upper() | |
| normalized_lines.append(speaker_name + ':') | |
| continue | |
| elif all_caps_speaker: | |
| # Already all caps, just ensure it has colon | |
| speaker_name = all_caps_speaker.group(1).strip() | |
| if not line_stripped.endswith(':'): | |
| normalized_lines.append(speaker_name + ':') | |
| else: | |
| normalized_lines.append(line) | |
| continue | |
| normalized_lines.append(line) | |
| generated_text = '\n'.join(normalized_lines) | |
| # Fix 0b: Remove prompt again after normalization (in case it was normalized to all caps) | |
| # This handles cases where "First Citizen:" was normalized to "FIRST CITIZEN:" | |
| prompt_normalized = prompt.strip().replace(':', '').strip().upper() | |
| lines = generated_text.split('\n') | |
| cleaned_lines_after_norm = [] | |
| prompt_removed_after_norm = False | |
| for i, line in enumerate(lines): | |
| line_stripped = line.strip() | |
| # Skip empty lines at the start | |
| if not line_stripped and not cleaned_lines_after_norm: | |
| continue | |
| # Normalize line for comparison (remove colon, case-insensitive) | |
| line_normalized = line_stripped.replace(':', '').strip().upper() | |
| # Check if this line matches the prompt (case-insensitive, allowing for colon) | |
| # Also check if it's a speaker name format (all caps after normalization) | |
| is_speaker_line = re.match(r'^([A-Z][A-Z\s]+?):\s*$', line_stripped) | |
| if is_speaker_line and line_normalized == prompt_normalized and not prompt_removed_after_norm: | |
| # This is the prompt appearing as a speaker - skip it | |
| prompt_removed_after_norm = True | |
| continue | |
| # If we've already removed the prompt, add the line | |
| cleaned_lines_after_norm.append(line) | |
| generated_text = '\n'.join(cleaned_lines_after_norm) | |
| # Fix 3c: Fix dialogue that was incorrectly formatted as speaker names | |
| # Pattern: All caps lines ending with colon that are actually dialogue (not speakers) | |
| # Examples: "HENCE ARE YOUR HONOUR TO ENTER:" -> "HENCE ARE YOUR HONOUR TO ENTER." | |
| # "THERE SHOULD RUE:" -> "THERE SHOULD RUE." | |
| # "UN TO THE LADY GREY:" -> "UNTO THE LADY GREY." | |
| # These are usually long phrases (3+ words) that don't look like character names | |
| lines = generated_text.split('\n') | |
| fixed_dialogue_lines = [] | |
| # Known speaker names (keep these as speakers) | |
| known_speakers = ['BAPTISTA', 'GLOUCESTER', 'CLARENCE', 'ROMEO', 'JULIET', 'HAMLET', 'MACBETH', | |
| 'KING', 'QUEEN', 'DUKE', 'PRINCE', 'LADY', 'FIRST', 'SECOND', 'THIRD', | |
| 'CITIZEN', 'GENTLEMAN', 'SERVANT', 'MENENIUS', 'COMINIUS', 'CORIOLANUS', | |
| 'VINCENTIO', 'ANGELO', 'ISABELLA', 'OTHELLO', 'DESDEMONA', 'IAGO'] | |
| for i, line in enumerate(lines): | |
| line_stripped = line.strip() | |
| # Check if line looks like all-caps speaker but is actually dialogue | |
| # Pattern: All caps, ends with colon | |
| if re.match(r'^([A-Z][A-Z\s]+?):\s*$', line_stripped): | |
| words = line_stripped.split() | |
| speaker_name = words[0] if words else '' | |
| # Check if it's a known speaker name (1-2 words, known name) | |
| is_known_speaker = (len(words) <= 2 and speaker_name in known_speakers) or \ | |
| (len(words) == 2 and words[0] in ['FIRST', 'SECOND', 'THIRD'] and words[1] in ['CITIZEN', 'GENTLEMAN', 'SERVANT']) | |
| if is_known_speaker: | |
| # Keep as speaker name | |
| fixed_dialogue_lines.append(line) | |
| # If it has 3+ words, it's likely dialogue, not a speaker name | |
| elif len(words) >= 3: | |
| # Convert colon to period (dialogue ending) | |
| dialogue = line_stripped[:-1] + '.' # Remove colon, add period | |
| fixed_dialogue_lines.append(dialogue) | |
| # Also check if it contains common dialogue words (not speaker names) | |
| elif any(word in ['ARE', 'YOUR', 'HONOUR', 'TO', 'ENTER', 'SHOULD', 'RUE', 'THE', 'GREY', 'HENCE', 'THERE', 'UN', 'UNTIL', 'UNTO', 'MORE', 'THAN', 'HALF', 'TH', 'AN'] for word in words): | |
| # Likely dialogue, not speaker | |
| dialogue = line_stripped[:-1] + '.' # Remove colon, add period | |
| fixed_dialogue_lines.append(dialogue) | |
| # Special case: Single letter "A:" is likely dialogue or incomplete, not a speaker | |
| elif len(words) == 1 and words[0] == 'A': | |
| # Convert to dialogue | |
| fixed_dialogue_lines.append('A.') | |
| # Special case: "MORE THAN HALF:" is dialogue, not speaker | |
| elif 'MORE' in words and 'THAN' in words: | |
| dialogue = line_stripped[:-1] + '.' # Remove colon, add period | |
| fixed_dialogue_lines.append(dialogue) | |
| else: | |
| # Keep as speaker name (might be a short unknown character name) | |
| fixed_dialogue_lines.append(line) | |
| else: | |
| fixed_dialogue_lines.append(line) | |
| generated_text = '\n'.join(fixed_dialogue_lines) | |
| # Fix 4: Remove duplicate speaker names (e.g., "EDWARD IV:\n...\nEDWARD IV:" -> keep only first) | |
| # More aggressive: remove same speaker if it appears within 5 lines (expanded window for empty lines) | |
| # Also handle case-insensitive duplicates (e.g., "First Citizen:" and "FIRST CITIZEN:") | |
| lines = generated_text.split('\n') | |
| cleaned_lines = [] | |
| speaker_history = [] # Track recent speakers with their line numbers (case-insensitive) | |
| for i, line in enumerate(lines): | |
| line_stripped = line.strip() | |
| # Check if this line is a speaker name (all caps after normalization) | |
| speaker_match = re.match(r'^([A-Z][A-Z\s]+?):\s*$', line_stripped) | |
| if speaker_match: | |
| speaker = speaker_match.group(1).strip() | |
| speaker_upper = speaker.upper() # For case-insensitive comparison | |
| # Check if this speaker appeared recently (within last 5 lines - expanded for empty lines) | |
| # Check both exact match and case-insensitive match | |
| recent_speaker = False | |
| for hist_speaker, hist_line_num in speaker_history[-5:]: # Check last 5 speakers | |
| hist_speaker_upper = hist_speaker.upper() | |
| if speaker == hist_speaker or speaker_upper == hist_speaker_upper: | |
| recent_speaker = True | |
| break | |
| if recent_speaker: | |
| # Skip this duplicate speaker | |
| continue | |
| # Add to history (store uppercase version for consistent comparison) | |
| speaker_history.append((speaker_upper, i)) | |
| # Keep only last 15 speakers in history (expanded) | |
| if len(speaker_history) > 15: | |
| speaker_history.pop(0) | |
| cleaned_lines.append(line) | |
| else: | |
| cleaned_lines.append(line) | |
| generated_text = '\n'.join(cleaned_lines) | |
| # Fix 5: Remove speaker names with no dialogue (e.g., "KING:\nEDWARD IV:" -> "EDWARD IV:", "First Citizen:\n\nCLARENCE:" -> "CLARENCE:") | |
| # A speaker name should be followed by actual dialogue, not immediately by another speaker or empty lines | |
| lines = generated_text.split('\n') | |
| final_lines = [] | |
| for i, line in enumerate(lines): | |
| line_stripped = line.strip() | |
| speaker_match = re.match(r'^([A-Z][A-Z\s]+?):\s*$', line_stripped) | |
| if speaker_match: | |
| # Check if next non-empty line is another speaker or if there's no dialogue at all | |
| has_dialogue = False | |
| # Check up to 5 lines ahead (more generous to catch dialogue) | |
| for j in range(i + 1, min(i + 6, len(lines))): | |
| next_line = lines[j].strip() | |
| if not next_line: # Skip empty lines | |
| continue | |
| # If next non-empty line is NOT a speaker, we have dialogue | |
| if not re.match(r'^([A-Z][A-Z\s]+?):\s*$', next_line): | |
| has_dialogue = True | |
| break | |
| # If next non-empty line IS a speaker, this speaker has no dialogue | |
| elif re.match(r'^([A-Z][A-Z\s]+?):\s*$', next_line): | |
| # This speaker has no dialogue - skip it | |
| has_dialogue = False | |
| break | |
| if not has_dialogue: | |
| # This speaker has no dialogue, skip it | |
| continue | |
| final_lines.append(line) | |
| generated_text = '\n'.join(final_lines) | |
| # Fix 5b: Fix merged text issues (e.g., "You?A:" -> "You? A:") | |
| # Add space after question/exclamation marks before capital letters | |
| generated_text = re.sub(r'([?!])([A-Z])', r'\1 \2', generated_text) | |
| # Fix 6: Remove multiple empty lines between speaker and dialogue | |
| generated_text = re.sub(r'([A-Z][A-Z\s]+?):\s*\n\s*\n+', r'\1:\n', generated_text) | |
| # Fix 7: Remove any remaining consecutive duplicate speakers (final cleanup) | |
| # Handle both exact duplicates and case-insensitive duplicates | |
| # This handles cases like "FIRST CITIZEN:\n\nFIRST CITIZEN:" -> "FIRST CITIZEN:" | |
| lines = generated_text.split('\n') | |
| final_cleaned_lines = [] | |
| last_speaker_upper = None | |
| for i, line in enumerate(lines): | |
| line_stripped = line.strip() | |
| speaker_match = re.match(r'^([A-Z][A-Z\s]+?):\s*$', line_stripped) | |
| if speaker_match: | |
| speaker = speaker_match.group(1).strip() | |
| speaker_upper = speaker.upper() | |
| # If this is the same speaker as the last one (case-insensitive), skip it | |
| if speaker_upper == last_speaker_upper: | |
| continue | |
| last_speaker_upper = speaker_upper | |
| final_cleaned_lines.append(line) | |
| else: | |
| # Reset speaker tracking on non-speaker lines (but keep last_speaker for nearby duplicates) | |
| # Only reset if we have substantial content (not just empty lines) | |
| if line_stripped: # Non-empty line | |
| # Keep last_speaker for a few lines in case of empty lines | |
| pass | |
| final_cleaned_lines.append(line) | |
| generated_text = '\n'.join(final_cleaned_lines) | |
| # Fix 7b: Remove duplicate words in sentences (e.g., "if it be it possible" -> "if it be possible") | |
| # Pattern: word followed by same word (case-insensitive) | |
| # But be careful not to remove valid repetitions like "very very" or "more more" | |
| # Only remove common function words that shouldn't repeat | |
| duplicate_word_patterns = [ | |
| (r'\b(it)\s+\1\b', r'\1'), # "it it" -> "it" | |
| (r'\b(the)\s+\1\b', r'\1'), # "the the" -> "the" | |
| (r'\b(a)\s+\1\b', r'\1'), # "a a" -> "a" | |
| (r'\b(an)\s+\1\b', r'\1'), # "an an" -> "an" | |
| (r'\b(is)\s+\1\b', r'\1'), # "is is" -> "is" | |
| (r'\b(was)\s+\1\b', r'\1'), # "was was" -> "was" | |
| (r'\b(are)\s+\1\b', r'\1'), # "are are" -> "are" | |
| (r'\b(be)\s+\1\b', r'\1'), # "be be" -> "be" | |
| ] | |
| for pattern, replacement in duplicate_word_patterns: | |
| generated_text = re.sub(pattern, replacement, generated_text, flags=re.IGNORECASE) | |
| # Fix 8: Handle incomplete termination - remove incomplete words/sentences at the end | |
| # This happens when the model hits the token limit mid-generation | |
| if generated_text.strip(): | |
| # Remove incomplete word at the end (word that doesn't end with punctuation or space) | |
| # Pattern: ends with a word that has no trailing punctuation/space | |
| # But keep if it ends with proper punctuation (. ! ? , ; :) | |
| lines = generated_text.split('\n') | |
| if lines: | |
| last_line = lines[-1].strip() | |
| # If last line doesn't end with punctuation and is not a speaker name | |
| if last_line and not re.match(r'^([A-Z][A-Z\s]+?):\s*$', last_line): | |
| # Check if it ends with incomplete word (no punctuation, not a complete sentence) | |
| # Remove if it ends with a word that looks incomplete | |
| # Pattern: ends with word that has no punctuation | |
| if not re.search(r'[.!?,;:]$', last_line): | |
| # Check if the last "word" is very short (likely incomplete) | |
| # Or if it's a single character/letter (likely cut off) | |
| words = last_line.split() | |
| if words: | |
| last_word = words[-1] | |
| # If last word is very short (1-2 chars) and not punctuation, likely incomplete | |
| if len(last_word) <= 2 and last_word.isalpha(): | |
| # Remove the incomplete last word | |
| lines[-1] = ' '.join(words[:-1]) if len(words) > 1 else '' | |
| # If last word doesn't end with punctuation and line is short, might be incomplete | |
| elif len(last_line) < 20 and not last_word.endswith(('.', '!', '?', ',', ';', ':')): | |
| # Check if removing last word makes sense | |
| # Only remove if it's clearly incomplete (very short word) | |
| if len(last_word) < 4: | |
| lines[-1] = ' '.join(words[:-1]) if len(words) > 1 else '' | |
| # If after processing, last line is empty or just whitespace, remove it | |
| if not lines[-1].strip(): | |
| lines = lines[:-1] | |
| # Reconstruct text | |
| generated_text = '\n'.join(lines) | |
| # Final check: if text doesn't end with punctuation and is not a speaker, | |
| # try to find the last complete sentence | |
| # BUT: Be less aggressive - only remove if we have multiple sentences and last one is clearly incomplete | |
| if generated_text.strip(): | |
| # Find the last complete sentence (ends with . ! ?) | |
| # Split by sentences | |
| sentences = re.split(r'([.!?]+)', generated_text) | |
| if len(sentences) > 3: # Only if we have at least 2 complete sentences | |
| # Reconstruct, keeping only complete sentences | |
| complete_text = '' | |
| for i in range(0, len(sentences) - 1, 2): | |
| if i + 1 < len(sentences): | |
| complete_text += sentences[i] + sentences[i + 1] | |
| # If we have complete sentences, use them; otherwise keep original | |
| if complete_text.strip(): | |
| # But check if we removed too much (more than 30% of text must remain) | |
| # AND the last sentence must be very short (likely incomplete) | |
| original_len = len(generated_text.strip()) | |
| complete_len = len(complete_text.strip()) | |
| if complete_len > original_len * 0.3: | |
| # Check if last sentence in original is very short (likely incomplete) | |
| last_sentence = sentences[-2] if len(sentences) >= 2 else '' | |
| if len(last_sentence.strip()) < 15: # Very short last sentence | |
| generated_text = complete_text.strip() | |
| return generated_text | |
| except Exception as e: | |
| import traceback | |
| return f"β Error during generation: {str(e)}\n\nPlease check:\n1. Model is uploaded to HuggingFace Model Hub\n2. Repository name is correct: shwethd/gpt2-shakespeare-124m\n3. File name is exactly: model_checkpoint_final.pt" | |
| # Create Gradio interface | |
| with gr.Blocks(title="GPT-2 124M Shakespeare Model") as demo: | |
| # Status indicator | |
| status_color = "π’" if model_loaded else "π΄" | |
| status_text = "Model loaded successfully!" if model_loaded else "β οΈ Model not loaded - check HuggingFace Model Hub!" | |
| gr.Markdown(f""" | |
| # π GPT-2 124M Shakespeare Language Model | |
| {status_color} **Status:** {status_text} | |
| This is a 124M parameter decoder-only transformer model trained on Shakespeare's complete works. | |
| **Training Results:** | |
| - Final Loss: 0.095127 (Target: < 0.099999) β | |
| - Model Parameters: 124.44M | |
| - Training Steps: 1,637 | |
| **π Note on Grammar Quality:** | |
| The model learns token patterns from Shakespeare text, but grammar may not be perfect due to: | |
| - Model size (124M is relatively small for perfect grammar) | |
| - Training loss measures token prediction, not grammatical correctness | |
| - Shakespeare text has archaic grammar patterns | |
| - For better grammar, use lower temperature (0.5-0.6) and higher repetition penalty (1.15-1.2) | |
| Enter a prompt below to generate Shakespeare-style text! | |
| {"β οΈ **Note:** If you see garbled/random text, the model may not have loaded correctly. Check the logs and ensure the model is uploaded to HuggingFace Model Hub: `shwethd/gpt2-shakespeare-124m`" if not model_loaded else ""} | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_input = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Enter your prompt here (e.g., 'First Citizen:', 'ROMEO:', 'To be or not')", | |
| value="First Citizen:", | |
| lines=3 | |
| ) | |
| max_tokens = gr.Slider( | |
| label="Max Tokens", | |
| minimum=50, | |
| maximum=200, | |
| value=100, | |
| step=10 | |
| ) | |
| temperature = gr.Slider( | |
| label="Temperature", | |
| minimum=0.1, | |
| maximum=2.0, | |
| value=0.6, | |
| step=0.1, | |
| info="Lower = more focused/grammatical (0.5-0.6 recommended). Higher = more creative but less coherent" | |
| ) | |
| top_k = gr.Slider( | |
| label="Top-K", | |
| minimum=10, | |
| maximum=100, | |
| value=40, | |
| step=10, | |
| info="Number of top tokens to consider. Lower (30-40) = more focused, Higher = more diverse" | |
| ) | |
| top_p = gr.Slider( | |
| label="Top-P (Nucleus)", | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.8, | |
| step=0.05, | |
| info="Nucleus sampling. Lower (0.75-0.8) = more grammatical/coherent. Higher (0.9+) = more random" | |
| ) | |
| repetition_penalty = gr.Slider( | |
| label="Repetition Penalty", | |
| minimum=1.0, | |
| maximum=1.5, | |
| value=1.15, | |
| step=0.05, | |
| info="Penalize repeated tokens. Higher (1.15-1.2) = better grammar/less repetition. Lower = more repetitive" | |
| ) | |
| generate_btn = gr.Button("Generate", variant="primary") | |
| with gr.Column(): | |
| output = gr.Textbox( | |
| label="Generated Text", | |
| lines=10, | |
| interactive=True, # Make it interactive so users can select and copy | |
| show_copy_button=True # Add copy button | |
| ) | |
| # Example prompts with suggested parameters | |
| gr.Markdown("### Example Prompts (Click to try - includes optimal settings)") | |
| examples = gr.Examples( | |
| examples=[ | |
| # Format: [prompt, max_tokens, temperature, top_k, top_p, repetition_penalty] | |
| # Optimized for better grammar: lower temp (0.5-0.6), lower top_p (0.75-0.8), higher rep_penalty (1.15-1.2) | |
| ["First Citizen:", 100, 0.6, 40, 0.8, 1.15], | |
| ["ROMEO:", 100, 0.55, 35, 0.78, 1.2], # Romantic - lower temp for coherence | |
| ["To be or not", 80, 0.5, 30, 0.75, 1.2], # Quote - very focused for grammar | |
| ["HAMLET:", 100, 0.6, 40, 0.8, 1.15], | |
| ["MACBETH:", 100, 0.6, 40, 0.8, 1.15], | |
| ["JULIET:", 100, 0.55, 35, 0.78, 1.2], # Romantic - lower temp | |
| ["KING:", 100, 0.6, 40, 0.8, 1.15], | |
| ["LADY MACBETH:", 100, 0.6, 40, 0.8, 1.15], | |
| ["OTHELLO:", 100, 0.6, 40, 0.8, 1.15], | |
| ["What light through yonder", 100, 0.55, 35, 0.78, 1.2], # Romantic quote | |
| ["All the world's a stage", 100, 0.6, 40, 0.8, 1.15], # Metaphorical | |
| ["Double, double toil and trouble", 80, 0.6, 40, 0.8, 1.15], # Witches chant | |
| ["Friends, Romans, countrymen", 100, 0.6, 40, 0.8, 1.15], # Speech | |
| ["A rose by any other name", 100, 0.55, 35, 0.78, 1.2], # Romantic quote | |
| ], | |
| inputs=[prompt_input, max_tokens, temperature, top_k, top_p, repetition_penalty] | |
| ) | |
| generate_btn.click( | |
| fn=generate_text, | |
| inputs=[prompt_input, max_tokens, temperature, top_k, top_p, repetition_penalty], | |
| outputs=output | |
| ) | |
| gr.Markdown(""" | |
| --- | |
| **Note:** The model was trained on Shakespeare text and generates text in that style. | |
| Generated text may not always be coherent but should follow Shakespearean patterns. | |
| """) | |
| if __name__ == "__main__": | |
| # Don't use share=True on HuggingFace Spaces | |
| demo.launch() | |