shwetashweta05 commited on
Commit
ada46b6
·
verified ·
1 Parent(s): 06ce905

Update pages/Image.py

Browse files
Files changed (1) hide show
  1. pages/Image.py +15 -4
pages/Image.py CHANGED
@@ -30,16 +30,21 @@ st.write("""
30
  st.write(":blue[**How Images Are Represented Digitally**]")
31
  st.write("""
32
  **1.Grayscale Images:** Pixels are represented by a single intensity value (0–255 for 8-bit images).
 
33
  **2.Color Images:** Pixels contain three intensity values for the Red, Green, and Blue (RGB) color channels.
 
34
  **3.Binary Images:** Each pixel is either black or white (0 or 1).
35
  """)
36
 
37
  st.write(":blue[**Applications of Images**]")
38
  st.write("""
39
- **1.Communication: Used in social media, advertising, and journalism to convey messages visually.
40
- 2.Medical Imaging: Tools like X-rays, CT scans, and MRIs rely on image processing.
41
- 3.Computer Vision: Enables facial recognition, autonomous vehicles, and object detection.
42
- 4.Art and Design: Images are central to creative industries like graphic design, animation, and film.
 
 
 
43
  """)
44
 
45
  st.subheader(":red[**What do you mean by color space explain?**]")
@@ -81,15 +86,21 @@ st.write("""
81
  st.subheader(":red[**Why Do We Use Different Color Spaces?**]")
82
  st.write("""
83
  **1.Device Compatibility:** Different devices (screens, printers, cameras) require different color models to display or produce colors accurately.
 
84
  **2.Efficiency:** Some color spaces are better suited for specific tasks (e.g., CMYK for printing, YCbCr for compression).
 
85
  **3.Human Perception:** Models like HSV and LAB align closely with how humans perceive colors, making them useful for adjustments and analysis.
86
  """)
87
 
88
  st.write(":blue[**Choosing the Right Color Space**]")
89
  st.write("""
90
  **1.RGB:** For digital displays and web-based projects.
 
91
  **2.CMYK:** For print media.
 
92
  **3.HSV/HSL:** When working with color adjustments in software.
 
93
  **4.LAB:** For accurate color corrections and advanced processing.
 
94
  **5.YCbCr:** For video encoding and compression.
95
  """)
 
30
  st.write(":blue[**How Images Are Represented Digitally**]")
31
  st.write("""
32
  **1.Grayscale Images:** Pixels are represented by a single intensity value (0–255 for 8-bit images).
33
+
34
  **2.Color Images:** Pixels contain three intensity values for the Red, Green, and Blue (RGB) color channels.
35
+
36
  **3.Binary Images:** Each pixel is either black or white (0 or 1).
37
  """)
38
 
39
  st.write(":blue[**Applications of Images**]")
40
  st.write("""
41
+ **1.Communication:** Used in social media, advertising, and journalism to convey messages visually.
42
+
43
+ **2.Medical Imaging:** Tools like X-rays, CT scans, and MRIs rely on image processing.
44
+
45
+ **3.Computer Vision:** Enables facial recognition, autonomous vehicles, and object detection.
46
+
47
+ **4.Art and Design:** Images are central to creative industries like graphic design, animation, and film.
48
  """)
49
 
50
  st.subheader(":red[**What do you mean by color space explain?**]")
 
86
  st.subheader(":red[**Why Do We Use Different Color Spaces?**]")
87
  st.write("""
88
  **1.Device Compatibility:** Different devices (screens, printers, cameras) require different color models to display or produce colors accurately.
89
+
90
  **2.Efficiency:** Some color spaces are better suited for specific tasks (e.g., CMYK for printing, YCbCr for compression).
91
+
92
  **3.Human Perception:** Models like HSV and LAB align closely with how humans perceive colors, making them useful for adjustments and analysis.
93
  """)
94
 
95
  st.write(":blue[**Choosing the Right Color Space**]")
96
  st.write("""
97
  **1.RGB:** For digital displays and web-based projects.
98
+
99
  **2.CMYK:** For print media.
100
+
101
  **3.HSV/HSL:** When working with color adjustments in software.
102
+
103
  **4.LAB:** For accurate color corrections and advanced processing.
104
+
105
  **5.YCbCr:** For video encoding and compression.
106
  """)