Spaces:
Sleeping
Sleeping
Move tf_model.h5 into saved_model folder
Browse files- Dockerfile +17 -0
- app.py +71 -0
- requirements.txt +8 -0
- tf_model.h5 → saved_model/config.json +2 -2
- saved_model/special_tokens_map.json +3 -0
- saved_model/tokenizer_config.json +3 -0
- saved_model/vocab.txt +3 -0
Dockerfile
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use an official Python runtime as a parent image
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Set the working directory in the container
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Copy the requirements file into the container
|
| 8 |
+
COPY requirements.txt .
|
| 9 |
+
|
| 10 |
+
# Install any needed packages specified in requirements.txt
|
| 11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 12 |
+
|
| 13 |
+
# Copy the rest of the application's code into the container
|
| 14 |
+
COPY . .
|
| 15 |
+
|
| 16 |
+
EXPOSE 7860
|
| 17 |
+
CMD ["gunicorn", "--bind", "0.0.0.0:7860", "--workers", "1", "app:app"]
|
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
from transformers import DistilBertTokenizer, TFDistilBertForSequenceClassification
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
# Initialize Flask app
|
| 7 |
+
app = Flask(__name__)
|
| 8 |
+
|
| 9 |
+
@app.route('/')
|
| 10 |
+
def health_check():
|
| 11 |
+
return jsonify({"status": "healthy"}), 200
|
| 12 |
+
|
| 13 |
+
# --- Load Model and Tokenizer ---
|
| 14 |
+
# Load the fine-tuned model and tokenizer from the saved directory
|
| 15 |
+
model_path = "./saved_model"
|
| 16 |
+
tokenizer = DistilBertTokenizer.from_pretrained(model_path)
|
| 17 |
+
model = TFDistilBertForSequenceClassification.from_pretrained(model_path)
|
| 18 |
+
|
| 19 |
+
print("Model and Tokenizer loaded successfully!")
|
| 20 |
+
|
| 21 |
+
# --- Helper Function for Text Cleaning ---
|
| 22 |
+
def clean_text(text):
|
| 23 |
+
text = text.lower()
|
| 24 |
+
text = re.sub(r'@[a-zA-Z0-9_]+', '', text)
|
| 25 |
+
text = re.sub(r'https?://[A-Za-z0-9./]+', '', text)
|
| 26 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
| 27 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 28 |
+
return text
|
| 29 |
+
|
| 30 |
+
# --- Define the Prediction Endpoint ---
|
| 31 |
+
@app.route('/predict', methods=['POST'])
|
| 32 |
+
def predict():
|
| 33 |
+
try:
|
| 34 |
+
# Get text from the request's JSON body
|
| 35 |
+
data = request.get_json()
|
| 36 |
+
text = data['text']
|
| 37 |
+
|
| 38 |
+
if not text:
|
| 39 |
+
return jsonify({"error": "Text field is required"}), 400
|
| 40 |
+
|
| 41 |
+
# Clean the input text
|
| 42 |
+
cleaned_text = clean_text(text)
|
| 43 |
+
|
| 44 |
+
# Tokenize the text
|
| 45 |
+
inputs = tokenizer(cleaned_text, return_tensors="tf", truncation=True, padding=True, max_length=128)
|
| 46 |
+
|
| 47 |
+
# Make a prediction
|
| 48 |
+
outputs = model(inputs)
|
| 49 |
+
logits = outputs.logits
|
| 50 |
+
probabilities = tf.nn.softmax(logits, axis=-1)[0].numpy()
|
| 51 |
+
prediction = tf.argmax(logits, axis=-1).numpy()[0]
|
| 52 |
+
|
| 53 |
+
# Map prediction index to label
|
| 54 |
+
labels = ['Non-Toxic', 'Toxic (Hate Speech/Offensive)']
|
| 55 |
+
result_label = labels[prediction]
|
| 56 |
+
confidence = float(probabilities[prediction])
|
| 57 |
+
|
| 58 |
+
# Return the result
|
| 59 |
+
return jsonify({
|
| 60 |
+
"text": text,
|
| 61 |
+
"prediction": result_label,
|
| 62 |
+
"confidence": f"{confidence:.4f}"
|
| 63 |
+
})
|
| 64 |
+
|
| 65 |
+
except Exception as e:
|
| 66 |
+
return jsonify({"error": str(e)}), 500
|
| 67 |
+
|
| 68 |
+
# Run the app
|
| 69 |
+
if __name__ == '__main__':
|
| 70 |
+
# Use 0.0.0.0 to make it accessible from other Docker containers
|
| 71 |
+
app.run(host='0.0.0.0', port=5000)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask
|
| 2 |
+
gunicorn
|
| 3 |
+
tensorflow
|
| 4 |
+
transformers
|
| 5 |
+
pandas
|
| 6 |
+
numpy
|
| 7 |
+
python-dotenv
|
| 8 |
+
tf-keras
|
tf_model.h5 → saved_model/config.json
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:19ce9f2958fffb779413a12f67a5ae4540cc136ffcebabdce3f5cecae1a4e1b3
|
| 3 |
+
size 492
|
saved_model/special_tokens_map.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6d346be366a7d1d48332dbc9fdf3bf8960b5d879522b7799ddba59e76237ee3
|
| 3 |
+
size 125
|
saved_model/tokenizer_config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7aea1a75760cc3312ad93f27a6119976b2046382760286eb80dee50978c02d7
|
| 3 |
+
size 1278
|
saved_model/vocab.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:07eced375cec144d27c900241f3e339478dec958f92fddbc551f295c992038a3
|
| 3 |
+
size 231508
|