Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,8 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
from groq import Groq
|
| 3 |
from pydantic import BaseModel
|
| 4 |
import json
|
| 5 |
-
import
|
| 6 |
-
import re
|
| 7 |
-
from datetime import datetime, timedelta
|
| 8 |
-
import random
|
| 9 |
|
| 10 |
-
# Pydantic models for structured output
|
| 11 |
class ValidationStatus(BaseModel):
|
| 12 |
is_valid: bool
|
| 13 |
syntax_errors: list[str]
|
|
@@ -19,186 +14,20 @@ class SQLQueryGeneration(BaseModel):
|
|
| 19 |
estimated_complexity: str
|
| 20 |
execution_notes: list[str]
|
| 21 |
validation_status: ValidationStatus
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
def
|
| 24 |
-
"""Generate
|
| 25 |
-
conn = sqlite3.connect(':memory:')
|
| 26 |
-
cursor = conn.cursor()
|
| 27 |
-
|
| 28 |
-
sample_data = {}
|
| 29 |
-
|
| 30 |
-
# Generate data based on common table patterns
|
| 31 |
-
if 'customers' in tables_used:
|
| 32 |
-
cursor.execute('''
|
| 33 |
-
CREATE TABLE customers (
|
| 34 |
-
customer_id INTEGER PRIMARY KEY,
|
| 35 |
-
name TEXT,
|
| 36 |
-
email TEXT
|
| 37 |
-
)
|
| 38 |
-
''')
|
| 39 |
-
|
| 40 |
-
customers = [
|
| 41 |
-
(1, 'Alice Johnson', 'alice@example.com'),
|
| 42 |
-
(2, 'Bob Smith', 'bob@example.com'),
|
| 43 |
-
(3, 'Carol Williams', 'carol@example.com'),
|
| 44 |
-
(4, 'David Brown', 'david@example.com'),
|
| 45 |
-
(5, 'Eve Davis', 'eve@example.com')
|
| 46 |
-
]
|
| 47 |
-
|
| 48 |
-
cursor.executemany('INSERT INTO customers VALUES (?, ?, ?)', customers)
|
| 49 |
-
sample_data['customers'] = customers
|
| 50 |
-
|
| 51 |
-
if 'orders' in tables_used:
|
| 52 |
-
cursor.execute('''
|
| 53 |
-
CREATE TABLE orders (
|
| 54 |
-
order_id INTEGER PRIMARY KEY,
|
| 55 |
-
customer_id INTEGER,
|
| 56 |
-
total_amount REAL,
|
| 57 |
-
order_date TEXT
|
| 58 |
-
)
|
| 59 |
-
''')
|
| 60 |
-
|
| 61 |
-
today = datetime.now()
|
| 62 |
-
orders = [
|
| 63 |
-
(101, 1, 600, (today - timedelta(days=10)).strftime('%Y-%m-%d')),
|
| 64 |
-
(102, 1, 450, (today - timedelta(days=5)).strftime('%Y-%m-%d')),
|
| 65 |
-
(103, 2, 1200, (today - timedelta(days=15)).strftime('%Y-%m-%d')),
|
| 66 |
-
(104, 3, 300, (today - timedelta(days=20)).strftime('%Y-%m-%d')),
|
| 67 |
-
(105, 3, 800, (today - timedelta(days=2)).strftime('%Y-%m-%d')),
|
| 68 |
-
(106, 4, 550, (today - timedelta(days=7)).strftime('%Y-%m-%d')),
|
| 69 |
-
(107, 5, 1500, (today - timedelta(days=12)).strftime('%Y-%m-%d'))
|
| 70 |
-
]
|
| 71 |
-
|
| 72 |
-
cursor.executemany('INSERT INTO orders VALUES (?, ?, ?, ?)', orders)
|
| 73 |
-
sample_data['orders'] = orders
|
| 74 |
-
|
| 75 |
-
if 'products' in tables_used:
|
| 76 |
-
cursor.execute('''
|
| 77 |
-
CREATE TABLE products (
|
| 78 |
-
product_id INTEGER PRIMARY KEY,
|
| 79 |
-
product_name TEXT,
|
| 80 |
-
price REAL,
|
| 81 |
-
category TEXT
|
| 82 |
-
)
|
| 83 |
-
''')
|
| 84 |
-
|
| 85 |
-
products = [
|
| 86 |
-
(1, 'Laptop', 999.99, 'Electronics'),
|
| 87 |
-
(2, 'Mouse', 29.99, 'Electronics'),
|
| 88 |
-
(3, 'Keyboard', 79.99, 'Electronics'),
|
| 89 |
-
(4, 'Monitor', 299.99, 'Electronics'),
|
| 90 |
-
(5, 'Desk', 199.99, 'Furniture')
|
| 91 |
-
]
|
| 92 |
-
|
| 93 |
-
cursor.executemany('INSERT INTO products VALUES (?, ?, ?, ?)', products)
|
| 94 |
-
sample_data['products'] = products
|
| 95 |
-
|
| 96 |
-
if 'employees' in tables_used:
|
| 97 |
-
cursor.execute('''
|
| 98 |
-
CREATE TABLE employees (
|
| 99 |
-
employee_id INTEGER PRIMARY KEY,
|
| 100 |
-
name TEXT,
|
| 101 |
-
department TEXT,
|
| 102 |
-
salary REAL
|
| 103 |
-
)
|
| 104 |
-
''')
|
| 105 |
-
|
| 106 |
-
employees = [
|
| 107 |
-
(1, 'John Doe', 'Engineering', 85000),
|
| 108 |
-
(2, 'Jane Smith', 'Marketing', 75000),
|
| 109 |
-
(3, 'Mike Johnson', 'Sales', 70000),
|
| 110 |
-
(4, 'Sarah Williams', 'Engineering', 90000),
|
| 111 |
-
(5, 'Tom Brown', 'HR', 65000)
|
| 112 |
-
]
|
| 113 |
-
|
| 114 |
-
cursor.executemany('INSERT INTO employees VALUES (?, ?, ?, ?)', employees)
|
| 115 |
-
sample_data['employees'] = employees
|
| 116 |
-
|
| 117 |
-
return conn, cursor, sample_data
|
| 118 |
-
|
| 119 |
-
def execute_sql_query(cursor, query):
|
| 120 |
-
"""Execute the SQL query and return results"""
|
| 121 |
try:
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
f"date('now', '-30 days')")
|
| 125 |
-
sqlite_query = sqlite_query.replace('NOW()', "date('now')")
|
| 126 |
-
|
| 127 |
-
cursor.execute(sqlite_query)
|
| 128 |
-
results = cursor.fetchall()
|
| 129 |
-
columns = [description[0] for description in cursor.description]
|
| 130 |
-
return results, columns, None
|
| 131 |
-
except Exception as e:
|
| 132 |
-
return None, None, str(e)
|
| 133 |
-
|
| 134 |
-
def format_sample_tables(sample_data):
|
| 135 |
-
"""Format sample tables as HTML for display"""
|
| 136 |
-
html = "<div style='margin: 20px 0;'>"
|
| 137 |
-
|
| 138 |
-
for table_name, data in sample_data.items():
|
| 139 |
-
html += f"<h3>📊 Sample {table_name} Table</h3>"
|
| 140 |
-
html += "<table style='border-collapse: collapse; width: 100%; margin-bottom: 20px;'>"
|
| 141 |
-
|
| 142 |
-
if table_name == 'customers':
|
| 143 |
-
html += "<tr style='background-color: #f0f0f0;'><th style='border: 1px solid #ddd; padding: 8px;'>customer_id</th><th style='border: 1px solid #ddd; padding: 8px;'>name</th><th style='border: 1px solid #ddd; padding: 8px;'>email</th></tr>"
|
| 144 |
-
for row in data:
|
| 145 |
-
html += f"<tr><td style='border: 1px solid #ddd; padding: 8px;'>{row[0]}</td><td style='border: 1px solid #ddd; padding: 8px;'>{row[1]}</td><td style='border: 1px solid #ddd; padding: 8px;'>{row[2]}</td></tr>"
|
| 146 |
-
|
| 147 |
-
elif table_name == 'orders':
|
| 148 |
-
html += "<tr style='background-color: #f0f0f0;'><th style='border: 1px solid #ddd; padding: 8px;'>order_id</th><th style='border: 1px solid #ddd; padding: 8px;'>customer_id</th><th style='border: 1px solid #ddd; padding: 8px;'>total_amount</th><th style='border: 1px solid #ddd; padding: 8px;'>order_date</th></tr>"
|
| 149 |
-
for row in data:
|
| 150 |
-
html += f"<tr><td style='border: 1px solid #ddd; padding: 8px;'>{row[0]}</td><td style='border: 1px solid #ddd; padding: 8px;'>{row[1]}</td><td style='border: 1px solid #ddd; padding: 8px;'>{row[2]}</td><td style='border: 1px solid #ddd; padding: 8px;'>{row[3]}</td></tr>"
|
| 151 |
-
|
| 152 |
-
elif table_name == 'products':
|
| 153 |
-
html += "<tr style='background-color: #f0f0f0;'><th style='border: 1px solid #ddd; padding: 8px;'>product_id</th><th style='border: 1px solid #ddd; padding: 8px;'>product_name</th><th style='border: 1px solid #ddd; padding: 8px;'>price</th><th style='border: 1px solid #ddd; padding: 8px;'>category</th></tr>"
|
| 154 |
-
for row in data:
|
| 155 |
-
html += f"<tr><td style='border: 1px solid #ddd; padding: 8px;'>{row[0]}</td><td style='border: 1px solid #ddd; padding: 8px;'>{row[1]}</td><td style='border: 1px solid #ddd; padding: 8px;'>{row[2]}</td><td style='border: 1px solid #ddd; padding: 8px;'>{row[3]}</td></tr>"
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
for row in data:
|
| 160 |
-
html += f"<tr><td style='border: 1px solid #ddd; padding: 8px;'>{row[0]}</td><td style='border: 1px solid #ddd; padding: 8px;'>{row[1]}</td><td style='border: 1px solid #ddd; padding: 8px;'>{row[2]}</td><td style='border: 1px solid #ddd; padding: 8px;'>{row[3]}</td></tr>"
|
| 161 |
|
| 162 |
-
html += "</table>"
|
| 163 |
-
|
| 164 |
-
html += "</div>"
|
| 165 |
-
return html
|
| 166 |
-
|
| 167 |
-
def format_execution_result(results, columns):
|
| 168 |
-
"""Format SQL execution results as HTML table"""
|
| 169 |
-
if not results:
|
| 170 |
-
return "<p>No results found.</p>"
|
| 171 |
-
|
| 172 |
-
html = "<div style='margin: 20px 0;'>"
|
| 173 |
-
html += "<h3>✅ SQL Execution Result (Final Output Table)</h3>"
|
| 174 |
-
html += "<table style='border-collapse: collapse; width: 100%;'>"
|
| 175 |
-
|
| 176 |
-
# Header
|
| 177 |
-
html += "<tr style='background-color: #4CAF50; color: white;'>"
|
| 178 |
-
for col in columns:
|
| 179 |
-
html += f"<th style='border: 1px solid #ddd; padding: 8px;'>{col}</th>"
|
| 180 |
-
html += "</tr>"
|
| 181 |
-
|
| 182 |
-
# Rows
|
| 183 |
-
for row in results:
|
| 184 |
-
html += "<tr>"
|
| 185 |
-
for cell in row:
|
| 186 |
-
html += f"<td style='border: 1px solid #ddd; padding: 8px;'>{cell}</td>"
|
| 187 |
-
html += "</tr>"
|
| 188 |
-
|
| 189 |
-
html += "</table></div>"
|
| 190 |
-
return html
|
| 191 |
-
|
| 192 |
-
def process_query(api_key, user_query):
|
| 193 |
-
"""Main function to process natural language query"""
|
| 194 |
-
if not api_key:
|
| 195 |
-
return "❌ Please enter your Groq API key", "", "", ""
|
| 196 |
-
|
| 197 |
-
if not user_query:
|
| 198 |
-
return "❌ Please enter a query", "", "", ""
|
| 199 |
-
|
| 200 |
-
try:
|
| 201 |
-
# Step 1: Generate SQL using Groq
|
| 202 |
client = Groq(api_key=api_key)
|
| 203 |
|
| 204 |
response = client.chat.completions.create(
|
|
@@ -206,9 +35,24 @@ def process_query(api_key, user_query):
|
|
| 206 |
messages=[
|
| 207 |
{
|
| 208 |
"role": "system",
|
| 209 |
-
"content": "You are a SQL expert. Generate structured SQL queries from natural language descriptions with proper syntax validation and metadata.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
},
|
| 211 |
-
{"role": "user", "content": user_query},
|
| 212 |
],
|
| 213 |
response_format={
|
| 214 |
"type": "json_schema",
|
|
@@ -223,125 +67,145 @@ def process_query(api_key, user_query):
|
|
| 223 |
json.loads(response.choices[0].message.content)
|
| 224 |
)
|
| 225 |
|
| 226 |
-
#
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
**Identified Components:**
|
| 233 |
-
- **Tables:** {', '.join(sql_query_generation.tables_used)}
|
| 234 |
-
- **Query Type:** {sql_query_generation.query_type}
|
| 235 |
-
- **Complexity:** {sql_query_generation.estimated_complexity}
|
| 236 |
-
"""
|
| 237 |
-
|
| 238 |
-
step2_output = f"""
|
| 239 |
-
## 🔧 Step 2: Generate Structured SQL
|
| 240 |
-
|
| 241 |
-
```json
|
| 242 |
-
{json.dumps(sql_query_generation.model_dump(), indent=2)}
|
| 243 |
-
```
|
| 244 |
-
|
| 245 |
-
**Generated SQL Query:**
|
| 246 |
-
```sql
|
| 247 |
-
{sql_query_generation.query}
|
| 248 |
-
```
|
| 249 |
-
"""
|
| 250 |
-
|
| 251 |
-
# Step 3: Generate sample data
|
| 252 |
-
conn, cursor, sample_data = generate_sample_data(
|
| 253 |
-
sql_query_generation.query,
|
| 254 |
-
sql_query_generation.tables_used
|
| 255 |
-
)
|
| 256 |
-
|
| 257 |
-
step3_output = f"""
|
| 258 |
-
## 📊 Step 3: Auto-Generate Sample Database Tables
|
| 259 |
-
|
| 260 |
-
{format_sample_tables(sample_data)}
|
| 261 |
-
"""
|
| 262 |
-
|
| 263 |
-
# Step 4: Execute query
|
| 264 |
-
results, columns, error = execute_sql_query(cursor, sql_query_generation.query)
|
| 265 |
-
|
| 266 |
-
if error:
|
| 267 |
-
step4_output = f"""
|
| 268 |
-
## ⚠️ Step 4: SQL Execution
|
| 269 |
-
|
| 270 |
-
**Error:** {error}
|
| 271 |
-
|
| 272 |
-
**Note:** The query might use database-specific functions. The sample execution uses SQLite.
|
| 273 |
-
"""
|
| 274 |
else:
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
{
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
except Exception as e:
|
| 291 |
-
error_msg = f"
|
| 292 |
-
return error_msg, "", "", ""
|
| 293 |
|
| 294 |
# Create Gradio interface
|
| 295 |
-
with gr.Blocks(title="
|
| 296 |
-
gr.Markdown(
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
- "Find all customers who made orders over $500 in the last 30 days, show their name, email, and total order amount"
|
| 303 |
-
- "Get all employees in the Engineering department with salary above 80000"
|
| 304 |
-
- "Show top 5 products by price"
|
| 305 |
-
""")
|
| 306 |
|
| 307 |
with gr.Row():
|
| 308 |
with gr.Column():
|
| 309 |
api_key_input = gr.Textbox(
|
| 310 |
-
label="
|
| 311 |
-
|
| 312 |
-
|
|
|
|
| 313 |
)
|
|
|
|
| 314 |
query_input = gr.Textbox(
|
| 315 |
-
label="
|
| 316 |
-
placeholder="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
lines=3
|
| 318 |
)
|
| 319 |
-
submit_btn = gr.Button("🚀 Generate & Execute SQL", variant="primary", size="lg")
|
| 320 |
|
| 321 |
with gr.Row():
|
| 322 |
with gr.Column():
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
-
|
| 329 |
-
fn=
|
| 330 |
inputs=[api_key_input, query_input],
|
| 331 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
)
|
| 333 |
|
| 334 |
-
gr.Markdown(
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
if __name__ == "__main__":
|
| 347 |
-
|
|
|
|
|
|
|
| 1 |
from groq import Groq
|
| 2 |
from pydantic import BaseModel
|
| 3 |
import json
|
| 4 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
| 6 |
class ValidationStatus(BaseModel):
|
| 7 |
is_valid: bool
|
| 8 |
syntax_errors: list[str]
|
|
|
|
| 14 |
estimated_complexity: str
|
| 15 |
execution_notes: list[str]
|
| 16 |
validation_status: ValidationStatus
|
| 17 |
+
table_schema: str
|
| 18 |
+
sample_data: str
|
| 19 |
+
execution_results: str
|
| 20 |
+
optimization_notes: list[str]
|
| 21 |
|
| 22 |
+
def generate_sql_query(api_key, user_query):
|
| 23 |
+
"""Generate SQL query from natural language using GROQ API"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
try:
|
| 25 |
+
if not api_key:
|
| 26 |
+
return "Error: Please enter your GROQ API key", "", "", "", "", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
if not user_query:
|
| 29 |
+
return "Error: Please enter a query description", "", "", "", "", ""
|
|
|
|
|
|
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
client = Groq(api_key=api_key)
|
| 32 |
|
| 33 |
response = client.chat.completions.create(
|
|
|
|
| 35 |
messages=[
|
| 36 |
{
|
| 37 |
"role": "system",
|
| 38 |
+
"content": """You are a SQL expert. Generate structured SQL queries from natural language descriptions with proper syntax validation and metadata.
|
| 39 |
+
After generating the SQL query, you must:
|
| 40 |
+
1. Create a sample SQL table schema based on the natural language description, including all necessary columns with appropriate data types
|
| 41 |
+
2. Populate the table with realistic sample data that demonstrates the query's functionality
|
| 42 |
+
3. Execute the generated SQL query against the sample table
|
| 43 |
+
4. Display the SQL table structure and data clearly
|
| 44 |
+
5. Show the query execution results
|
| 45 |
+
Always present your response in this order:
|
| 46 |
+
- Generated SQL query with syntax explanation
|
| 47 |
+
- Table schema (CREATE TABLE statement)
|
| 48 |
+
- Sample data (INSERT statements or table visualization)
|
| 49 |
+
- Query execution results
|
| 50 |
+
- Any relevant notes about assumptions made or query optimization suggestions""",
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"role": "user",
|
| 54 |
+
"content": user_query
|
| 55 |
},
|
|
|
|
| 56 |
],
|
| 57 |
response_format={
|
| 58 |
"type": "json_schema",
|
|
|
|
| 67 |
json.loads(response.choices[0].message.content)
|
| 68 |
)
|
| 69 |
|
| 70 |
+
# Format validation status
|
| 71 |
+
validation_text = f"Valid: {sql_query_generation.validation_status.is_valid}\n"
|
| 72 |
+
if sql_query_generation.validation_status.syntax_errors:
|
| 73 |
+
validation_text += "Errors:\n" + "\n".join(
|
| 74 |
+
f"- {error}" for error in sql_query_generation.validation_status.syntax_errors
|
| 75 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
else:
|
| 77 |
+
validation_text += "No syntax errors found"
|
| 78 |
+
|
| 79 |
+
# Format metadata
|
| 80 |
+
metadata = f"""Query Type: {sql_query_generation.query_type}
|
| 81 |
+
Tables Used: {', '.join(sql_query_generation.tables_used)}
|
| 82 |
+
Complexity: {sql_query_generation.estimated_complexity}
|
| 83 |
+
|
| 84 |
+
Execution Notes:
|
| 85 |
+
{chr(10).join(f"- {note}" for note in sql_query_generation.execution_notes)}
|
| 86 |
+
|
| 87 |
+
Optimization Notes:
|
| 88 |
+
{chr(10).join(f"- {note}" for note in sql_query_generation.optimization_notes)}"""
|
| 89 |
+
|
| 90 |
+
return (
|
| 91 |
+
sql_query_generation.query,
|
| 92 |
+
metadata,
|
| 93 |
+
sql_query_generation.table_schema,
|
| 94 |
+
sql_query_generation.sample_data,
|
| 95 |
+
sql_query_generation.execution_results,
|
| 96 |
+
validation_text
|
| 97 |
+
)
|
| 98 |
|
| 99 |
except Exception as e:
|
| 100 |
+
error_msg = f"Error: {str(e)}"
|
| 101 |
+
return error_msg, "", "", "", "", ""
|
| 102 |
|
| 103 |
# Create Gradio interface
|
| 104 |
+
with gr.Blocks(title="SQL Query Generator", theme=gr.themes.Soft()) as demo:
|
| 105 |
+
gr.Markdown(
|
| 106 |
+
"""
|
| 107 |
+
# 🗄️ Natural Language to SQL Query Generator
|
| 108 |
+
Convert your natural language descriptions into structured SQL queries with validation and execution results.
|
| 109 |
+
"""
|
| 110 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
with gr.Row():
|
| 113 |
with gr.Column():
|
| 114 |
api_key_input = gr.Textbox(
|
| 115 |
+
label="GROQ API Key",
|
| 116 |
+
type="password",
|
| 117 |
+
placeholder="Enter your GROQ API key here...",
|
| 118 |
+
info="Your API key is not stored and only used for this session"
|
| 119 |
)
|
| 120 |
+
|
| 121 |
query_input = gr.Textbox(
|
| 122 |
+
label="Natural Language Query",
|
| 123 |
+
placeholder="e.g., Find all the students who scored more than 90 out of 100",
|
| 124 |
+
lines=3,
|
| 125 |
+
value="Find all the students who scored more than 90 out of 100"
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
generate_btn = gr.Button("Generate SQL Query", variant="primary", size="lg")
|
| 129 |
+
|
| 130 |
+
gr.Examples(
|
| 131 |
+
examples=[
|
| 132 |
+
["Find all the students who scored more than 90 out of 100"],
|
| 133 |
+
["Get the top 5 customers by total purchase amount"],
|
| 134 |
+
["List all employees hired in the last 6 months"],
|
| 135 |
+
["Find products with price between $50 and $100"],
|
| 136 |
+
["Show average salary by department"]
|
| 137 |
+
],
|
| 138 |
+
inputs=query_input,
|
| 139 |
+
label="Example Queries"
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
with gr.Row():
|
| 143 |
+
with gr.Column():
|
| 144 |
+
sql_output = gr.Code(
|
| 145 |
+
label="Generated SQL Query",
|
| 146 |
+
language="sql",
|
| 147 |
+
lines=5
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
metadata_output = gr.Textbox(
|
| 151 |
+
label="Query Metadata",
|
| 152 |
+
lines=8
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
validation_output = gr.Textbox(
|
| 156 |
+
label="Validation Status",
|
| 157 |
lines=3
|
| 158 |
)
|
|
|
|
| 159 |
|
| 160 |
with gr.Row():
|
| 161 |
with gr.Column():
|
| 162 |
+
schema_output = gr.Code(
|
| 163 |
+
label="Table Schema",
|
| 164 |
+
language="sql",
|
| 165 |
+
lines=8
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
with gr.Column():
|
| 169 |
+
sample_data_output = gr.Code(
|
| 170 |
+
label="Sample Data",
|
| 171 |
+
language="sql",
|
| 172 |
+
lines=8
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
with gr.Row():
|
| 176 |
+
execution_output = gr.Textbox(
|
| 177 |
+
label="Execution Results",
|
| 178 |
+
lines=10
|
| 179 |
+
)
|
| 180 |
|
| 181 |
+
generate_btn.click(
|
| 182 |
+
fn=generate_sql_query,
|
| 183 |
inputs=[api_key_input, query_input],
|
| 184 |
+
outputs=[
|
| 185 |
+
sql_output,
|
| 186 |
+
metadata_output,
|
| 187 |
+
schema_output,
|
| 188 |
+
sample_data_output,
|
| 189 |
+
execution_output,
|
| 190 |
+
validation_output
|
| 191 |
+
]
|
| 192 |
)
|
| 193 |
|
| 194 |
+
gr.Markdown(
|
| 195 |
+
"""
|
| 196 |
+
---
|
| 197 |
+
### How to use:
|
| 198 |
+
1. Enter your GROQ API key (get one from [console.groq.com](https://console.groq.com))
|
| 199 |
+
2. Type your natural language query description
|
| 200 |
+
3. Click "Generate SQL Query" to see the results
|
| 201 |
+
|
| 202 |
+
The app will provide:
|
| 203 |
+
- A validated SQL query
|
| 204 |
+
- Table schema and sample data
|
| 205 |
+
- Execution results
|
| 206 |
+
- Optimization suggestions
|
| 207 |
+
"""
|
| 208 |
+
)
|
| 209 |
|
| 210 |
if __name__ == "__main__":
|
| 211 |
+
demo.launch(share=True)
|