|
import streamlit as st |
|
from transformers import DistilBertTokenizer, TFDistilBertForSequenceClassification |
|
import tensorflow as tf |
|
|
|
|
|
model_path = 'shukdevdatta123/Dreaddit_DistillBert_Stress_Model' |
|
loaded_model = TFDistilBertForSequenceClassification.from_pretrained(model_path) |
|
loaded_tokenizer = DistilBertTokenizer.from_pretrained(model_path) |
|
|
|
|
|
def predict_with_loaded_model(in_sentences): |
|
labels = ["non-stress", "stress"] |
|
inputs = loaded_tokenizer(in_sentences, return_tensors="tf", padding=True, truncation=True, max_length=512) |
|
predictions = loaded_model(inputs) |
|
predicted_labels = tf.argmax(predictions.logits, axis=-1).numpy() |
|
predicted_probs = tf.nn.softmax(predictions.logits, axis=-1).numpy() |
|
|
|
return [{"text": sentence, "confidence": probs.tolist(), "label": labels[label]} for sentence, label, probs in zip(in_sentences, predicted_labels, predicted_probs)] |
|
|
|
|
|
st.title("Stress Prediction with DistilBERT") |
|
|
|
|
|
user_input = st.text_area("Enter a sentence or text:", "") |
|
|
|
|
|
if st.button("Predict"): |
|
if user_input: |
|
|
|
prediction = predict_with_loaded_model([user_input])[0] |
|
st.write(f"Text: {prediction['text']}") |
|
st.write(f"Prediction: {prediction['label']}") |
|
|
|
else: |
|
st.write("Please enter a sentence to predict.") |