Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import os | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from transformers import pipeline | |
st.title("Translation App") | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") | |
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") | |
def translate(text, src_lang, tgt_lang): | |
translator = pipeline( | |
"translation", | |
model=model, | |
tokenizer=tokenizer, | |
src_lang=src_lang, | |
tgt_lang=tgt_lang, | |
) | |
output = translator(text, max_length=400) | |
return output[0]["translation_text"] | |
def main(): | |
src_lang = st.text_input("Enter source language code (e.g., en):") | |
tgt_lang = st.text_input("Enter target language code (e.g., fr):") | |
text = st.text_area("Enter text to translate:") | |
if st.button("Translate"): | |
if src_lang and tgt_lang and text: | |
result = translate(text, src_lang, tgt_lang) | |
st.write("Translated Text:", result) | |
else: | |
st.warning("Please provide source language, target language, and text to translate.") | |
if __name__ == "__main__": | |
main() | |