Spaces:
Sleeping
Sleeping
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from PIL import Image, ImageDraw | |
import torch.nn.functional as F | |
def autopad(k, p=None): # kernel, padding | |
# Pad to 'same' | |
if p is None: | |
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad | |
return p | |
class DepthSeperabelConv2d(nn.Module): | |
""" | |
DepthSeperable Convolution 2d with residual connection | |
""" | |
def __init__(self, inplanes, planes, kernel_size=3, stride=1, downsample=None, act=True): | |
super(DepthSeperabelConv2d, self).__init__() | |
self.depthwise = nn.Sequential( | |
nn.Conv2d(inplanes, inplanes, kernel_size, stride=stride, groups=inplanes, padding=kernel_size//2, bias=False), | |
nn.BatchNorm2d(inplanes, momentum=BN_MOMENTUM) | |
) | |
# self.depthwise = nn.Conv2d(inplanes, inplanes, kernel_size, stride=stride, groups=inplanes, padding=1, bias=False) | |
# self.pointwise = nn.Conv2d(inplanes, planes, 1, bias=False) | |
self.pointwise = nn.Sequential( | |
nn.Conv2d(inplanes, planes, 1, bias=False), | |
nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
) | |
self.downsample = downsample | |
self.stride = stride | |
try: | |
self.act = Hardswish() if act else nn.Identity() | |
except: | |
self.act = nn.Identity() | |
def forward(self, x): | |
#residual = x | |
out = self.depthwise(x) | |
out = self.act(out) | |
out = self.pointwise(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out = self.act(out) | |
return out | |
class SharpenConv(nn.Module): | |
# SharpenConv convolution | |
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |
super(SharpenConv, self).__init__() | |
sobel_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype='float32') | |
kenel_weight = np.vstack([sobel_kernel]*c2*c1).reshape(c2,c1,3,3) | |
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) | |
self.conv.weight.data = torch.from_numpy(kenel_weight) | |
self.conv.weight.requires_grad = False | |
self.bn = nn.BatchNorm2d(c2) | |
try: | |
self.act = Hardswish() if act else nn.Identity() | |
except: | |
self.act = nn.Identity() | |
def forward(self, x): | |
return self.act(self.bn(self.conv(x))) | |
def fuseforward(self, x): | |
return self.act(self.conv(x)) | |
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish() | |
def forward(x): | |
# return x * F.hardsigmoid(x) # for torchscript and CoreML | |
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX | |
class Conv(nn.Module): | |
# Standard convolution | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |
super(Conv, self).__init__() | |
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) | |
self.bn = nn.BatchNorm2d(c2) | |
try: | |
self.act = Hardswish() if act else nn.Identity() | |
except: | |
self.act = nn.Identity() | |
def forward(self, x): | |
return self.act(self.bn(self.conv(x))) | |
def fuseforward(self, x): | |
return self.act(self.conv(x)) | |
class Bottleneck(nn.Module): | |
# Standard bottleneck | |
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion | |
super(Bottleneck, self).__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = Conv(c_, c2, 3, 1, g=g) | |
self.add = shortcut and c1 == c2 | |
def forward(self, x): | |
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) | |
class BottleneckCSP(nn.Module): | |
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |
super(BottleneckCSP, self).__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) | |
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) | |
self.cv4 = Conv(2 * c_, c2, 1, 1) | |
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) | |
self.act = nn.LeakyReLU(0.1, inplace=True) | |
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) | |
def forward(self, x): | |
y1 = self.cv3(self.m(self.cv1(x))) | |
y2 = self.cv2(x) | |
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) | |
class SPP(nn.Module): | |
# Spatial pyramid pooling layer used in YOLOv3-SPP | |
def __init__(self, c1, c2, k=(5, 9, 13)): | |
super(SPP, self).__init__() | |
c_ = c1 // 2 # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) | |
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) | |
def forward(self, x): | |
x = self.cv1(x) | |
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) | |
class Focus(nn.Module): | |
# Focus wh information into c-space | |
# slice concat conv | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |
super(Focus, self).__init__() | |
self.conv = Conv(c1 * 4, c2, k, s, p, g, act) | |
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) | |
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) | |
class Concat(nn.Module): | |
# Concatenate a list of tensors along dimension | |
def __init__(self, dimension=1): | |
super(Concat, self).__init__() | |
self.d = dimension | |
def forward(self, x): | |
""" print("***********************") | |
for f in x: | |
print(f.shape) """ | |
return torch.cat(x, self.d) | |
class Detect(nn.Module): | |
stride = None # strides computed during build | |
def __init__(self, nc=13, anchors=(), ch=()): # detection layer | |
super(Detect, self).__init__() | |
self.nc = nc # number of classes | |
self.no = nc + 5 # number of outputs per anchor 85 | |
self.nl = len(anchors) # number of detection layers 3 | |
self.na = len(anchors[0]) // 2 # number of anchors 3 | |
self.grid = [torch.zeros(1)] * self.nl # init grid | |
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |
self.register_buffer('anchors', a) # shape(nl,na,2) | |
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) | |
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv | |
def forward(self, x): | |
z = [] # inference output | |
for i in range(self.nl): | |
x[i] = self.m[i](x[i]) # conv | |
# print(str(i)+str(x[i].shape)) | |
bs, _, ny, nx = x[i].shape # x(bs,255,w,w) to x(bs,3,w,w,85) | |
x[i]=x[i].view(bs, self.na, self.no, ny*nx).permute(0, 1, 3, 2).view(bs, self.na, ny, nx, self.no).contiguous() | |
# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |
# print(str(i)+str(x[i].shape)) | |
if not self.training: # inference | |
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
y = x[i].sigmoid() | |
#print("**") | |
#print(y.shape) #[1, 3, w, h, 85] | |
#print(self.grid[i].shape) #[1, 3, w, h, 2] | |
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy | |
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
"""print("**") | |
print(y.shape) #[1, 3, w, h, 85] | |
print(y.view(bs, -1, self.no).shape) #[1, 3*w*h, 85]""" | |
z.append(y.view(bs, -1, self.no)) | |
return x if self.training else (torch.cat(z, 1), x) | |
def _make_grid(nx=20, ny=20): | |
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
"""class Detections: | |
# detections class for YOLOv5 inference results | |
def __init__(self, imgs, pred, names=None): | |
super(Detections, self).__init__() | |
d = pred[0].device # device | |
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations | |
self.imgs = imgs # list of images as numpy arrays | |
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) | |
self.names = names # class names | |
self.xyxy = pred # xyxy pixels | |
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels | |
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized | |
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized | |
self.n = len(self.pred) | |
def display(self, pprint=False, show=False, save=False): | |
colors = color_list() | |
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)): | |
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} ' | |
if pred is not None: | |
for c in pred[:, -1].unique(): | |
n = (pred[:, -1] == c).sum() # detections per class | |
str += f'{n} {self.names[int(c)]}s, ' # add to string | |
if show or save: | |
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np | |
for *box, conf, cls in pred: # xyxy, confidence, class | |
# str += '%s %.2f, ' % (names[int(cls)], conf) # label | |
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot | |
if save: | |
f = f'results{i}.jpg' | |
str += f"saved to '{f}'" | |
img.save(f) # save | |
if show: | |
img.show(f'Image {i}') # show | |
if pprint: | |
print(str) | |
def print(self): | |
self.display(pprint=True) # print results | |
def show(self): | |
self.display(show=True) # show results | |
def save(self): | |
self.display(save=True) # save results | |
def __len__(self): | |
return self.n | |
def tolist(self): | |
# return a list of Detections objects, i.e. 'for result in results.tolist():' | |
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)] | |
for d in x: | |
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: | |
setattr(d, k, getattr(d, k)[0]) # pop out of list""" | |