Spaces:
Sleeping
Sleeping
import os | |
from yacs.config import CfgNode as CN | |
_C = CN() | |
_C.LOG_DIR = 'runs/' | |
_C.GPUS = (0,1) | |
_C.WORKERS = 8 | |
_C.PIN_MEMORY = False | |
_C.PRINT_FREQ = 20 | |
_C.AUTO_RESUME =False # Resume from the last training interrupt | |
_C.NEED_AUTOANCHOR = False # Re-select the prior anchor(k-means) When training from scratch (epoch=0), set it to be ture! | |
_C.DEBUG = False | |
_C.num_seg_class = 2 | |
# Cudnn related params | |
_C.CUDNN = CN() | |
_C.CUDNN.BENCHMARK = True | |
_C.CUDNN.DETERMINISTIC = False | |
_C.CUDNN.ENABLED = True | |
# common params for NETWORK | |
_C.MODEL = CN(new_allowed=True) | |
_C.MODEL.NAME = '' | |
_C.MODEL.STRU_WITHSHARE = False #add share_block to segbranch | |
_C.MODEL.HEADS_NAME = [''] | |
_C.MODEL.PRETRAINED = "" | |
_C.MODEL.PRETRAINED_DET = "" | |
_C.MODEL.IMAGE_SIZE = [640, 640] # width * height, ex: 192 * 256 | |
_C.MODEL.EXTRA = CN(new_allowed=True) | |
# loss params | |
_C.LOSS = CN(new_allowed=True) | |
_C.LOSS.LOSS_NAME = '' | |
_C.LOSS.MULTI_HEAD_LAMBDA = None | |
_C.LOSS.FL_GAMMA = 0.0 # focal loss gamma | |
_C.LOSS.CLS_POS_WEIGHT = 1.0 # classification loss positive weights | |
_C.LOSS.OBJ_POS_WEIGHT = 1.0 # object loss positive weights | |
_C.LOSS.SEG_POS_WEIGHT = 1.0 # segmentation loss positive weights | |
_C.LOSS.BOX_GAIN = 0.05 # box loss gain | |
_C.LOSS.CLS_GAIN = 0.5 # classification loss gain | |
_C.LOSS.OBJ_GAIN = 1.0 # object loss gain | |
_C.LOSS.DA_SEG_GAIN = 0.2 # driving area segmentation loss gain | |
_C.LOSS.LL_SEG_GAIN = 0.2 # lane line segmentation loss gain | |
_C.LOSS.LL_IOU_GAIN = 0.2 # lane line iou loss gain | |
# DATASET related params | |
_C.DATASET = CN(new_allowed=True) | |
_C.DATASET.DATAROOT = '/home/zwt/bdd/bdd100k/images/100k' # the path of images folder | |
_C.DATASET.LABELROOT = '/home/zwt/bdd/bdd100k/labels/100k' # the path of det_annotations folder | |
_C.DATASET.MASKROOT = '/home/zwt/bdd/bdd_seg_gt' # the path of da_seg_annotations folder | |
_C.DATASET.LANEROOT = '/home/zwt/bdd/bdd_lane_gt' # the path of ll_seg_annotations folder | |
_C.DATASET.DATASET = 'BddDataset' | |
_C.DATASET.TRAIN_SET = 'train' | |
_C.DATASET.TEST_SET = 'val' | |
_C.DATASET.DATA_FORMAT = 'jpg' | |
_C.DATASET.SELECT_DATA = False | |
_C.DATASET.ORG_IMG_SIZE = [720, 1280] | |
# training data augmentation | |
_C.DATASET.FLIP = True | |
_C.DATASET.SCALE_FACTOR = 0.25 | |
_C.DATASET.ROT_FACTOR = 10 | |
_C.DATASET.TRANSLATE = 0.1 | |
_C.DATASET.SHEAR = 0.0 | |
_C.DATASET.COLOR_RGB = False | |
_C.DATASET.HSV_H = 0.015 # image HSV-Hue augmentation (fraction) | |
_C.DATASET.HSV_S = 0.7 # image HSV-Saturation augmentation (fraction) | |
_C.DATASET.HSV_V = 0.4 # image HSV-Value augmentation (fraction) | |
# TODO: more augmet params to add | |
# train | |
_C.TRAIN = CN(new_allowed=True) | |
_C.TRAIN.LR0 = 0.001 # initial learning rate (SGD=1E-2, Adam=1E-3) | |
_C.TRAIN.LRF = 0.2 # final OneCycleLR learning rate (lr0 * lrf) | |
_C.TRAIN.WARMUP_EPOCHS = 3.0 | |
_C.TRAIN.WARMUP_BIASE_LR = 0.1 | |
_C.TRAIN.WARMUP_MOMENTUM = 0.8 | |
_C.TRAIN.OPTIMIZER = 'adam' | |
_C.TRAIN.MOMENTUM = 0.937 | |
_C.TRAIN.WD = 0.0005 | |
_C.TRAIN.NESTEROV = True | |
_C.TRAIN.GAMMA1 = 0.99 | |
_C.TRAIN.GAMMA2 = 0.0 | |
_C.TRAIN.BEGIN_EPOCH = 0 | |
_C.TRAIN.END_EPOCH = 240 | |
_C.TRAIN.VAL_FREQ = 1 | |
_C.TRAIN.BATCH_SIZE_PER_GPU =24 | |
_C.TRAIN.SHUFFLE = True | |
_C.TRAIN.IOU_THRESHOLD = 0.2 | |
_C.TRAIN.ANCHOR_THRESHOLD = 4.0 | |
# if training 3 tasks end-to-end, set all parameters as True | |
# Alternating optimization | |
_C.TRAIN.SEG_ONLY = False # Only train two segmentation branchs | |
_C.TRAIN.DET_ONLY = False # Only train detection branch | |
_C.TRAIN.ENC_SEG_ONLY = False # Only train encoder and two segmentation branchs | |
_C.TRAIN.ENC_DET_ONLY = False # Only train encoder and detection branch | |
# Single task | |
_C.TRAIN.DRIVABLE_ONLY = False # Only train da_segmentation task | |
_C.TRAIN.LANE_ONLY = False # Only train ll_segmentation task | |
_C.TRAIN.DET_ONLY = False # Only train detection task | |
_C.TRAIN.PLOT = True # | |
# testing | |
_C.TEST = CN(new_allowed=True) | |
_C.TEST.BATCH_SIZE_PER_GPU = 24 | |
_C.TEST.MODEL_FILE = '' | |
_C.TEST.SAVE_JSON = False | |
_C.TEST.SAVE_TXT = False | |
_C.TEST.PLOTS = True | |
_C.TEST.NMS_CONF_THRESHOLD = 0.001 | |
_C.TEST.NMS_IOU_THRESHOLD = 0.6 | |
def update_config(cfg, args): | |
cfg.defrost() | |
# cfg.merge_from_file(args.cfg) | |
if args.modelDir: | |
cfg.OUTPUT_DIR = args.modelDir | |
if args.logDir: | |
cfg.LOG_DIR = args.logDir | |