Spaces:
Running
Running
shubham5027
commited on
Upload 6 files
Browse files
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
GOOGLE_API_KEY ="AIzaSyASX72XnwUqqM7XZOPY0pxoxqPNRC9thWA"
|
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from io import BytesIO
|
4 |
+
from PIL import Image
|
5 |
+
import tensorflow as tf
|
6 |
+
import base64
|
7 |
+
import cv2
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import google.generativeai as genai
|
11 |
+
load_dotenv()
|
12 |
+
genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))
|
13 |
+
|
14 |
+
header_image_path = 'farmi.jpg'
|
15 |
+
st.image(header_image_path, use_column_width='auto')
|
16 |
+
|
17 |
+
|
18 |
+
def get_gemini_repsonse(input,prompt):
|
19 |
+
model=genai.GenerativeModel('gemini-pro')
|
20 |
+
response=model.generate_content([input,prompt])
|
21 |
+
return response.text
|
22 |
+
|
23 |
+
input_prompt= """You are an farming expert and i want some remedial and preventive information about given tomato plant disease. give me remedial informaion for appropriate environmental condition , soil condition and what pesticides and fertilizers to use. give the information in such away that it is easy for a farmer to understand if possible in hindi"""
|
24 |
+
|
25 |
+
MODEL = tf.keras.models.load_model('./potato_trained_models/1/')
|
26 |
+
TOMATO_MODEL = tf.keras.models.load_model('./tomato_trained_models/1')
|
27 |
+
PEEPER_MODEL = tf.keras.models.load_model('./pepper_trained_models/1')
|
28 |
+
|
29 |
+
class_names = ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy']
|
30 |
+
|
31 |
+
Tomato_classes = ['Tomato_healthy', 'Tomato_Spider_mites_Two_spotted_spider_mite', 'Tomato__Target_Spot', 'Tomato_Septoria_leaf_spot',
|
32 |
+
'Tomato__Tomato_mosaic_virus', 'Tomato_Leaf_Mold', 'Tomato_Bacterial_spot', 'Tomato_Late_blight',
|
33 |
+
'Tomato_Early_blight', 'Tomato__Tomato_YellowLeaf__Curl_Virus']
|
34 |
+
|
35 |
+
pepper_classes = ['pepper_bell_bacterial_spot','pepper_healthy']
|
36 |
+
|
37 |
+
|
38 |
+
st.title("Plant Disease Detection")
|
39 |
+
st.write("This application is detecting disease in three plants photato, tomato and pepper")
|
40 |
+
options = ["Select One Plant","Tomato", "Potato", "Pepper"]
|
41 |
+
|
42 |
+
|
43 |
+
selected_option = st.selectbox("Select Plant:", options)
|
44 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
45 |
+
|
46 |
+
def read_file_as_image(data)->np.array:
|
47 |
+
image = np.array(data)
|
48 |
+
image = cv2.resize(image, (256,256))
|
49 |
+
return image
|
50 |
+
|
51 |
+
async def potato():
|
52 |
+
if uploaded_file is not None:
|
53 |
+
image = Image.open(uploaded_file)
|
54 |
+
st.image(image, caption="Uploaded Image", width=250)
|
55 |
+
image = read_file_as_image(image)
|
56 |
+
image_batch = np.expand_dims(image, axis=0)
|
57 |
+
predictions = MODEL.predict(image_batch)
|
58 |
+
predicted_class = class_names[np.argmax(predictions[0])]
|
59 |
+
confidence = np.max(predictions[0])
|
60 |
+
print("prediction", class_names[np.argmax(predictions)])
|
61 |
+
st.write("Predicted Class : ", predicted_class, " Confidence Level : ", confidence)
|
62 |
+
input=st.text_input(predicted_class,key="input")
|
63 |
+
response=get_gemini_repsonse(input_prompt,input)
|
64 |
+
st.subheader("The Response is")
|
65 |
+
st.write(response)
|
66 |
+
|
67 |
+
async def tomato():
|
68 |
+
if uploaded_file is not None:
|
69 |
+
image = Image.open(uploaded_file)
|
70 |
+
st.image(image, caption="Uploaded Image", width=250)
|
71 |
+
image = read_file_as_image(image)
|
72 |
+
image_batch = np.expand_dims(image, axis=0)
|
73 |
+
predictions = TOMATO_MODEL.predict(image_batch)
|
74 |
+
predicted_class = Tomato_classes[np.argmax(predictions[0])]
|
75 |
+
confidence = np.max(predictions[0])
|
76 |
+
print("prediction", Tomato_classes[np.argmax(predictions)])
|
77 |
+
st.write("Predicted Class : ", predicted_class, " Confidence Level : ", confidence)
|
78 |
+
input=st.text_input(predicted_class,key="input")
|
79 |
+
response=get_gemini_repsonse(input_prompt,input)
|
80 |
+
st.subheader("The Response is")
|
81 |
+
st.write(response)
|
82 |
+
|
83 |
+
|
84 |
+
async def pepper():
|
85 |
+
if uploaded_file is not None:
|
86 |
+
image = Image.open(uploaded_file)
|
87 |
+
st.image(image, caption="Uploaded Image", width=250)
|
88 |
+
image = read_file_as_image(image)
|
89 |
+
image_batch = np.expand_dims(image, axis=0)
|
90 |
+
predictions = PEEPER_MODEL.predict(image_batch)
|
91 |
+
predicted_class = pepper_classes[np.argmax(predictions[0])]
|
92 |
+
confidence = np.max(predictions[0])
|
93 |
+
print("prediction", pepper_classes[np.argmax(predictions)])
|
94 |
+
st.write("Predicted Class : ", predicted_class, "Confidence Level : ", confidence)
|
95 |
+
input=st.text_input(predicted_class,key="input")
|
96 |
+
response=get_gemini_repsonse(input_prompt,input)
|
97 |
+
st.subheader("The Response is")
|
98 |
+
st.write(response)
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
import asyncio
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
if st.button('Predict'):
|
106 |
+
|
107 |
+
if selected_option == 'Potato':
|
108 |
+
asyncio.run(potato())
|
109 |
+
elif selected_option == 'Tomato':
|
110 |
+
asyncio.run(tomato())
|
111 |
+
else :
|
112 |
+
asyncio.run(pepper())
|
113 |
+
# else:
|
114 |
+
# st.write("not avalible")
|
farmi.jpg
ADDED
image.jpg
ADDED
phto.jpg
ADDED
requirements.txt
ADDED
Binary file (286 Bytes). View file
|
|