pustozerov
commited on
Commit
·
5f36b24
1
Parent(s):
075ef09
Implemented NER into the Streamlit interface.
Browse files- app.py +9 -2
- modules/nlp/nemo_ner.py +3 -3
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import glob
|
2 |
import random
|
3 |
import os
|
4 |
import numpy as np
|
@@ -9,6 +8,7 @@ from datasets import load_dataset
|
|
9 |
from scipy.io.wavfile import write
|
10 |
|
11 |
from modules.diarization.nemo_diarization import diarization
|
|
|
12 |
|
13 |
FOLDER_WAV_DB = "data/database/"
|
14 |
FOLDER_USER_DATA = "data/user_data/"
|
@@ -32,12 +32,19 @@ if st.button('Try a random sample from the database'):
|
|
32 |
st.audio(audio_file.read())
|
33 |
st.write("Starting transcription. Estimated processing time: %0.1f seconds" % (f.frames / (f.samplerate * 5)))
|
34 |
result = diarization(os.path.join(FOLDER_WAV_DB, file_name + '.wav'))
|
|
|
|
|
|
|
|
|
35 |
with open("info/transcripts/pred_rttms/" + file_name + ".txt") as f:
|
36 |
transcript = f.read()
|
37 |
-
st.write("Transcription completed.")
|
|
|
|
|
38 |
st.write("Number of speakers: %s" % result[file_name]["speaker_count"])
|
39 |
st.write("Sentences: %s" % len(result[file_name]["sentences"]))
|
40 |
st.write("Words: %s" % len(result[file_name]["words"]))
|
|
|
41 |
st.download_button(
|
42 |
label="Download audio transcript",
|
43 |
data=transcript,
|
|
|
|
|
1 |
import random
|
2 |
import os
|
3 |
import numpy as np
|
|
|
8 |
from scipy.io.wavfile import write
|
9 |
|
10 |
from modules.diarization.nemo_diarization import diarization
|
11 |
+
from modules.nlp.nemo_ner import detect_ner
|
12 |
|
13 |
FOLDER_WAV_DB = "data/database/"
|
14 |
FOLDER_USER_DATA = "data/user_data/"
|
|
|
32 |
st.audio(audio_file.read())
|
33 |
st.write("Starting transcription. Estimated processing time: %0.1f seconds" % (f.frames / (f.samplerate * 5)))
|
34 |
result = diarization(os.path.join(FOLDER_WAV_DB, file_name + '.wav'))
|
35 |
+
sentences = result[file_name]["sentences"]
|
36 |
+
all_strings = ""
|
37 |
+
for sentence in sentences:
|
38 |
+
all_strings = all_strings + sentence["sentence"] + "\n"
|
39 |
with open("info/transcripts/pred_rttms/" + file_name + ".txt") as f:
|
40 |
transcript = f.read()
|
41 |
+
st.write("Transcription completed. Starting named entity recognition.")
|
42 |
+
tagged_string, tags_summary = detect_ner(all_strings)
|
43 |
+
transcript = transcript + '\n' + tagged_string
|
44 |
st.write("Number of speakers: %s" % result[file_name]["speaker_count"])
|
45 |
st.write("Sentences: %s" % len(result[file_name]["sentences"]))
|
46 |
st.write("Words: %s" % len(result[file_name]["words"]))
|
47 |
+
st.write("Found named entities: %s" % tags_summary)
|
48 |
st.download_button(
|
49 |
label="Download audio transcript",
|
50 |
data=transcript,
|
modules/nlp/nemo_ner.py
CHANGED
@@ -9,8 +9,8 @@ pretrained_ner_model = nemo_nlp.models.TokenClassificationModel.from_pretrained(
|
|
9 |
model_name="ner_en_bert", override_config_path=new_config)
|
10 |
|
11 |
|
12 |
-
def detect_ner(
|
13 |
-
tagged_string = pretrained_ner_model.add_predictions([
|
14 |
tags = re.findall('\[.*?]', tagged_string)
|
15 |
-
tags_summary =
|
16 |
return tagged_string, tags_summary
|
|
|
9 |
model_name="ner_en_bert", override_config_path=new_config)
|
10 |
|
11 |
|
12 |
+
def detect_ner(input_strings):
|
13 |
+
tagged_string = pretrained_ner_model.add_predictions([input_strings.replace('[', '').replace(']', '')])[0]
|
14 |
tags = re.findall('\[.*?]', tagged_string)
|
15 |
+
tags_summary = str(dict(Counter(tags)))[1:-1]
|
16 |
return tagged_string, tags_summary
|