pustozerov's picture
Implemented punctuation and capitalization into the Streamlit interface.
bf9a369
raw
history blame
4.44 kB
import random
import os
import numpy as np
import soundfile as sf
import streamlit as st
from pydub import AudioSegment
from datasets import load_dataset
from scipy.io.wavfile import write
from modules.diarization.nemo_diarization import diarization
from modules.nlp.nemo_ner import detect_ner
from modules.nlp.nemo_punct_cap import punctuation_capitalization
FOLDER_WAV_DB = "data/database/"
FOLDER_USER_DATA = "data/user_data/"
FOLDER_USER_DATA_WAV = "data/user_data_wav/"
SAMPLE_RATE = 16000
dataset = load_dataset("pustozerov/crema_d_diarization", split='validation')
st.title('Call Transcription demo')
st.subheader('This simple demo shows the possibilities of the ASR and NLP in the task of '
'automatic speech recognition and diarization. It works with mp3, ogg and wav files. You can randomly '
'pickup an audio file with the dialogue from the built-in database or try uploading your own files.')
if st.button('Try a random sample from the database'):
os.makedirs(FOLDER_WAV_DB, exist_ok=True)
shuffled_dataset = dataset.shuffle(seed=random.randint(0, 100))
file_name = str(shuffled_dataset["file"][0]).split(".")[0]
audio_bytes = np.array(shuffled_dataset["data"][0])
audio_bytes_scaled = np.int16(audio_bytes / np.max(np.abs(audio_bytes)) * 32767)
write(os.path.join(FOLDER_WAV_DB, file_name + '.wav'), rate=SAMPLE_RATE, data=audio_bytes_scaled)
f = sf.SoundFile(os.path.join(FOLDER_WAV_DB, file_name + '.wav'))
audio_file = open(os.path.join(FOLDER_WAV_DB, file_name + '.wav'), 'rb')
st.audio(audio_file.read())
st.write("Starting transcription. Estimated processing time: %0.1f seconds" % (f.frames / (f.samplerate * 5)))
result = diarization(os.path.join(FOLDER_WAV_DB, file_name + '.wav'))
with open("info/transcripts/pred_rttms/" + file_name + ".txt") as f:
transcript = f.read()
st.write("Transcription completed. Starting assigning punctuation and capitalization.")
sentences = result[file_name]["sentences"]
all_strings = ""
for sentence in sentences:
all_strings = all_strings + sentence["sentence"] + "\n"
all_strings = punctuation_capitalization([all_strings])[0]
st.write("Punctuation and capitalization are ready. Starting named entity recognition.")
tagged_string, tags_summary = detect_ner(all_strings)
transcript = transcript + '\n' + tagged_string
st.write("Number of speakers: %s" % result[file_name]["speaker_count"])
st.write("Sentences: %s" % len(result[file_name]["sentences"]))
st.write("Words: %s" % len(result[file_name]["words"]))
st.write("Found named entities: %s" % tags_summary)
st.download_button(
label="Download audio transcript",
data=transcript,
file_name='transcript.txt',
mime='text/csv',
)
uploaded_file = st.file_uploader("Choose your recording with a speech",
accept_multiple_files=False, type=["mp3", "wav", "ogg"])
if uploaded_file is not None:
os.makedirs(FOLDER_USER_DATA, exist_ok=True)
print(uploaded_file)
if ".mp3" in uploaded_file.name:
sound = AudioSegment.from_mp3(uploaded_file)
elif ".ogg" in uploaded_file.name:
sound = AudioSegment.from_ogg(uploaded_file)
else:
sound = AudioSegment.from_wav(uploaded_file)
save_path = FOLDER_USER_DATA_WAV + uploaded_file.name
os.makedirs(FOLDER_USER_DATA_WAV, exist_ok=True)
sound.export(save_path, format="wav", parameters=["-ac", "1"])
file_name = os.path.basename(save_path).split(".")[0]
audio_file = open(save_path, 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes)
f = sf.SoundFile(save_path)
st.write("Starting transcription. Estimated processing time: %0.0f minutes and %02.0f seconds"
% ((f.frames / (f.samplerate * 3) // 60), (f.frames / (f.samplerate * 3) % 60)))
result = diarization(save_path)
with open("info/transcripts/pred_rttms/" + file_name + ".txt") as f:
transcript = f.read()
st.write("Transcription completed.")
st.write("Number of speakers: %s" % result[file_name]["speaker_count"])
st.write("Sentences: %s" % len(result[file_name]["sentences"]))
st.write("Words: %s" % len(result[file_name]["words"]))
st.download_button(
label="Download audio transcript",
data=transcript,
file_name='transcript.txt',
mime='text/csv',
)