sohomghosh
commited on
Commit
β’
4d9bf04
1
Parent(s):
50a57bd
Update app.py
Browse files
app.py
CHANGED
@@ -8,13 +8,27 @@ import pickle
|
|
8 |
lr_clf = pickle.load(open("lr_clf_FiNCAT.pickle",'rb'))
|
9 |
|
10 |
def score_fincat(txt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
li = []
|
12 |
highlight = []
|
|
|
|
|
13 |
for word in txt.split():
|
14 |
if any(char.isdigit() for char in word):
|
15 |
if word[-1] in ['.', ',', ';', ":", "-", "!", "?", ")", '"', "'"]:
|
|
|
16 |
word = word[:-1]
|
17 |
-
st = txt.index(word)
|
|
|
18 |
ed = st + len(word)
|
19 |
x = {'paragraph' : txt, 'offset_start':st, 'offset_end':ed}
|
20 |
context_text = extract_context_words(x)
|
@@ -28,8 +42,8 @@ def score_fincat(txt):
|
|
28 |
headers = ['numeral', 'prediction', 'probability']
|
29 |
dff = pd.DataFrame(li)
|
30 |
dff.columns = headers
|
31 |
-
|
32 |
return highlight, dff
|
33 |
|
|
|
34 |
iface = gr.Interface(fn=score_fincat, inputs=gr.inputs.Textbox(lines=5, placeholder="Enter Financial Text here..."), title="FiNCAT-2",description="Financial Numeral Claim Analysis Tool (Enhanced)", outputs=["highlight", "dataframe"], allow_flagging="never", examples=["In the year 2021, the markets were bullish. We expect to boost our sales by 80% this year.", "Last year our profit was $2.2M. This year it will increase to $3M"])
|
35 |
iface.launch()
|
|
|
8 |
lr_clf = pickle.load(open("lr_clf_FiNCAT.pickle",'rb'))
|
9 |
|
10 |
def score_fincat(txt):
|
11 |
+
'''
|
12 |
+
Extracts numerals from financial texts and checks if they are in-claim or out-of claim
|
13 |
+
|
14 |
+
Parameters:
|
15 |
+
txt (str): Financial Text. This is to be given as input. Numerals present in this text will be evaluated.
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
highlight (list): A list each element of which is a tuple. Each tuple has two elements i) word ii) whether the word is in-claim or out-of-claim.
|
19 |
+
dff (pandas dataframe): A pandas dataframe having three columns 'numeral', 'prediction' (whether the word is in-claim or out-of-claim) and 'probability' (probabilty of the prediction).
|
20 |
+
'''
|
21 |
li = []
|
22 |
highlight = []
|
23 |
+
txt = " " + txt + " "
|
24 |
+
k = ''
|
25 |
for word in txt.split():
|
26 |
if any(char.isdigit() for char in word):
|
27 |
if word[-1] in ['.', ',', ';', ":", "-", "!", "?", ")", '"', "'"]:
|
28 |
+
k = word[-1]
|
29 |
word = word[:-1]
|
30 |
+
st = txt.index(" " + word + k + " ")+1
|
31 |
+
k = ''
|
32 |
ed = st + len(word)
|
33 |
x = {'paragraph' : txt, 'offset_start':st, 'offset_end':ed}
|
34 |
context_text = extract_context_words(x)
|
|
|
42 |
headers = ['numeral', 'prediction', 'probability']
|
43 |
dff = pd.DataFrame(li)
|
44 |
dff.columns = headers
|
|
|
45 |
return highlight, dff
|
46 |
|
47 |
+
|
48 |
iface = gr.Interface(fn=score_fincat, inputs=gr.inputs.Textbox(lines=5, placeholder="Enter Financial Text here..."), title="FiNCAT-2",description="Financial Numeral Claim Analysis Tool (Enhanced)", outputs=["highlight", "dataframe"], allow_flagging="never", examples=["In the year 2021, the markets were bullish. We expect to boost our sales by 80% this year.", "Last year our profit was $2.2M. This year it will increase to $3M"])
|
49 |
iface.launch()
|