|
import gradio as gr |
|
import nltk |
|
import pandas as pd |
|
nltk.download('punkt') |
|
from fincat_utils import extract_context_words |
|
from fincat_utils import bert_embedding_extract |
|
import pickle |
|
lr_clf = pickle.load(open("lr_clf_FiNCAT.pickle",'rb')) |
|
|
|
def score_fincat(txt): |
|
li = [] |
|
highlight = [] |
|
for word in txt.split(): |
|
if any(char.isdigit() for char in word): |
|
if word[-1] in ['.', ',', ';', ":", "-", "!", "?", ")", '"', "'"]: |
|
word = word[:-1] |
|
st = txt.index(word) |
|
ed = st + len(word) |
|
x = {'paragraph' : txt, 'offset_start':st, 'offset_end':ed} |
|
context_text = extract_context_words(x) |
|
features = bert_embedding_extract(context_text, word) |
|
prediction = lr_clf.predict(features.reshape(1, 768)) |
|
prediction_probability = '{:.4f}'.format(round(lr_clf.predict_proba(features.reshape(1, 768))[:,1][0], 4)) |
|
highlight.append((word, ' In-claim' if prediction==1 else 'Out-of-Claim')) |
|
li.append([word,' In-claim' if prediction==1 else 'Out-of-Claim', prediction_probability]) |
|
else: |
|
highlight.append((word, ' ')) |
|
headers = ['numeral', 'prediction', 'probability'] |
|
dff = pd.DataFrame(li) |
|
dff.columns = headers |
|
|
|
return highlight, dff |
|
|
|
iface = gr.Interface(fn=score_fincat, inputs=gr.inputs.Textbox(lines=5, placeholder="Enter Financial Text here..."), title="FiNCAT-2",description="Financial Numeral Claim Analysis Tool (Enhanced)", outputs=["highlight", "dataframe"], allow_flagging="never", examples=["In the year 2021, the markets were bullish. We expect to boost our sales by 80% this year.", "Last year our profit was $2.2M. This year it will increase to $3M"]) |
|
iface.launch(share=True) |
|
|